MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksfclwwlk1hashn Structured version   Visualization version   Unicode version

Theorem clwlksfclwwlk1hashn 26959
Description: The size of the first component of a closed walk. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 2-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1  |-  A  =  ( 1st `  c
)
clwlksfclwwlk.2  |-  B  =  ( 2nd `  c
)
clwlksfclwwlk.c  |-  C  =  { c  e.  (ClWalks `  G )  |  (
# `  A )  =  N }
clwlksfclwwlk.f  |-  F  =  ( c  e.  C  |->  ( B substr  <. 0 ,  ( # `  A
) >. ) )
Assertion
Ref Expression
clwlksfclwwlk1hashn  |-  ( W  e.  C  ->  ( # `
 ( 1st `  W
) )  =  N )
Distinct variable groups:    G, c    N, c    W, c
Allowed substitution hints:    A( c)    B( c)    C( c)    F( c)

Proof of Theorem clwlksfclwwlk1hashn
StepHypRef Expression
1 clwlksfclwwlk.1 . . . . . 6  |-  A  =  ( 1st `  c
)
21fveq2i 6194 . . . . 5  |-  ( # `  A )  =  (
# `  ( 1st `  c ) )
32eqeq1i 2627 . . . 4  |-  ( (
# `  A )  =  N  <->  ( # `  ( 1st `  c ) )  =  N )
4 fveq2 6191 . . . . . 6  |-  ( c  =  W  ->  ( 1st `  c )  =  ( 1st `  W
) )
54fveq2d 6195 . . . . 5  |-  ( c  =  W  ->  ( # `
 ( 1st `  c
) )  =  (
# `  ( 1st `  W ) ) )
65eqeq1d 2624 . . . 4  |-  ( c  =  W  ->  (
( # `  ( 1st `  c ) )  =  N  <->  ( # `  ( 1st `  W ) )  =  N ) )
73, 6syl5bb 272 . . 3  |-  ( c  =  W  ->  (
( # `  A )  =  N  <->  ( # `  ( 1st `  W ) )  =  N ) )
8 clwlksfclwwlk.c . . 3  |-  C  =  { c  e.  (ClWalks `  G )  |  (
# `  A )  =  N }
97, 8elrab2 3366 . 2  |-  ( W  e.  C  <->  ( W  e.  (ClWalks `  G )  /\  ( # `  ( 1st `  W ) )  =  N ) )
109simprbi 480 1  |-  ( W  e.  C  ->  ( # `
 ( 1st `  W
) )  =  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   0cc0 9936   #chash 13117   substr csubstr 13295  ClWalkscclwlks 26666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  clwlksf1clwwlklem  26968  clwlksf1clwwlk  26969
  Copyright terms: Public domain W3C validator