MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksfclwwlk2wrd Structured version   Visualization version   GIF version

Theorem clwlksfclwwlk2wrd 26958
Description: The second component of a closed walk is a word over the "vertices". (Contributed by Alexander van der Vekens, 25-Jun-2018.) (Revised by AV, 2-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1 𝐴 = (1st𝑐)
clwlksfclwwlk.2 𝐵 = (2nd𝑐)
clwlksfclwwlk.c 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
clwlksfclwwlk.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
Assertion
Ref Expression
clwlksfclwwlk2wrd (𝑐𝐶𝐵 ∈ Word (Vtx‘𝐺))
Distinct variable group:   𝐺,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)   𝐶(𝑐)   𝐹(𝑐)   𝑁(𝑐)

Proof of Theorem clwlksfclwwlk2wrd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwlksfclwwlk.c . . 3 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
21rabeq2i 3197 . 2 (𝑐𝐶 ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (#‘𝐴) = 𝑁))
3 eqid 2622 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
4 eqid 2622 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
5 clwlksfclwwlk.1 . . . . 5 𝐴 = (1st𝑐)
6 clwlksfclwwlk.2 . . . . 5 𝐵 = (2nd𝑐)
73, 4, 5, 6clwlkcompim 26676 . . . 4 (𝑐 ∈ (ClWalks‘𝐺) → ((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))if-((𝐵𝑖) = (𝐵‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖)}, {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐴𝑖))) ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))))
8 lencl 13324 . . . . . 6 (𝐴 ∈ Word dom (iEdg‘𝐺) → (#‘𝐴) ∈ ℕ0)
9 nn0z 11400 . . . . . . . . . 10 ((#‘𝐴) ∈ ℕ0 → (#‘𝐴) ∈ ℤ)
10 fzval3 12536 . . . . . . . . . 10 ((#‘𝐴) ∈ ℤ → (0...(#‘𝐴)) = (0..^((#‘𝐴) + 1)))
119, 10syl 17 . . . . . . . . 9 ((#‘𝐴) ∈ ℕ0 → (0...(#‘𝐴)) = (0..^((#‘𝐴) + 1)))
1211feq2d 6031 . . . . . . . 8 ((#‘𝐴) ∈ ℕ0 → (𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ↔ 𝐵:(0..^((#‘𝐴) + 1))⟶(Vtx‘𝐺)))
1312biimpa 501 . . . . . . 7 (((#‘𝐴) ∈ ℕ0𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) → 𝐵:(0..^((#‘𝐴) + 1))⟶(Vtx‘𝐺))
14 iswrdi 13309 . . . . . . 7 (𝐵:(0..^((#‘𝐴) + 1))⟶(Vtx‘𝐺) → 𝐵 ∈ Word (Vtx‘𝐺))
1513, 14syl 17 . . . . . 6 (((#‘𝐴) ∈ ℕ0𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) → 𝐵 ∈ Word (Vtx‘𝐺))
168, 15sylan 488 . . . . 5 ((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) → 𝐵 ∈ Word (Vtx‘𝐺))
1716adantr 481 . . . 4 (((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))if-((𝐵𝑖) = (𝐵‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖)}, {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐴𝑖))) ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) → 𝐵 ∈ Word (Vtx‘𝐺))
187, 17syl 17 . . 3 (𝑐 ∈ (ClWalks‘𝐺) → 𝐵 ∈ Word (Vtx‘𝐺))
1918adantr 481 . 2 ((𝑐 ∈ (ClWalks‘𝐺) ∧ (#‘𝐴) = 𝑁) → 𝐵 ∈ Word (Vtx‘𝐺))
202, 19sylbi 207 1 (𝑐𝐶𝐵 ∈ Word (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  if-wif 1012   = wceq 1483  wcel 1990  wral 2912  {crab 2916  wss 3574  {csn 4177  {cpr 4179  cop 4183  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  0cc0 9936  1c1 9937   + caddc 9939  0cn0 11292  cz 11377  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   substr csubstr 13295  Vtxcvtx 25874  iEdgciedg 25875  ClWalkscclwlks 26666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-clwlks 26667
This theorem is referenced by:  clwlksfclwwlk2sswd  26961  clwlksfclwwlk  26962
  Copyright terms: Public domain W3C validator