MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksf1clwwlk Structured version   Visualization version   GIF version

Theorem clwlksf1clwwlk 26969
Description: There is a one-to-one function between the set of closed walks (defined as words) of length n and the set of closed walks of length n (in an undirected simple graph). (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1 𝐴 = (1st𝑐)
clwlksfclwwlk.2 𝐵 = (2nd𝑐)
clwlksfclwwlk.c 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
clwlksfclwwlk.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
Assertion
Ref Expression
clwlksf1clwwlk ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶1-1→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐   𝐶,𝑐   𝐹,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)

Proof of Theorem clwlksf1clwwlk
Dummy variables 𝑖 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlksfclwwlk.1 . . 3 𝐴 = (1st𝑐)
2 clwlksfclwwlk.2 . . 3 𝐵 = (2nd𝑐)
3 clwlksfclwwlk.c . . 3 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
4 clwlksfclwwlk.f . . 3 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
51, 2, 3, 4clwlksfclwwlk 26962 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶⟶(𝑁 ClWWalksN 𝐺))
6 simprl 794 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) → 𝑢𝐶)
7 ovex 6678 . . . . . 6 ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) ∈ V
8 fveq2 6191 . . . . . . . . 9 (𝑐 = 𝑢 → (2nd𝑐) = (2nd𝑢))
92, 8syl5eq 2668 . . . . . . . 8 (𝑐 = 𝑢𝐵 = (2nd𝑢))
10 fveq2 6191 . . . . . . . . . . 11 (𝑐 = 𝑢 → (1st𝑐) = (1st𝑢))
111, 10syl5eq 2668 . . . . . . . . . 10 (𝑐 = 𝑢𝐴 = (1st𝑢))
1211fveq2d 6195 . . . . . . . . 9 (𝑐 = 𝑢 → (#‘𝐴) = (#‘(1st𝑢)))
1312opeq2d 4409 . . . . . . . 8 (𝑐 = 𝑢 → ⟨0, (#‘𝐴)⟩ = ⟨0, (#‘(1st𝑢))⟩)
149, 13oveq12d 6668 . . . . . . 7 (𝑐 = 𝑢 → (𝐵 substr ⟨0, (#‘𝐴)⟩) = ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩))
1514, 4fvmptg 6280 . . . . . 6 ((𝑢𝐶 ∧ ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) ∈ V) → (𝐹𝑢) = ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩))
166, 7, 15sylancl 694 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) → (𝐹𝑢) = ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩))
17 simpr 477 . . . . . . . 8 ((𝑢𝐶𝑤𝐶) → 𝑤𝐶)
18 ovex 6678 . . . . . . . 8 ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩) ∈ V
1917, 18jctir 561 . . . . . . 7 ((𝑢𝐶𝑤𝐶) → (𝑤𝐶 ∧ ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩) ∈ V))
2019adantl 482 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) → (𝑤𝐶 ∧ ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩) ∈ V))
21 fveq2 6191 . . . . . . . . 9 (𝑐 = 𝑤 → (2nd𝑐) = (2nd𝑤))
222, 21syl5eq 2668 . . . . . . . 8 (𝑐 = 𝑤𝐵 = (2nd𝑤))
23 fveq2 6191 . . . . . . . . . . 11 (𝑐 = 𝑤 → (1st𝑐) = (1st𝑤))
241, 23syl5eq 2668 . . . . . . . . . 10 (𝑐 = 𝑤𝐴 = (1st𝑤))
2524fveq2d 6195 . . . . . . . . 9 (𝑐 = 𝑤 → (#‘𝐴) = (#‘(1st𝑤)))
2625opeq2d 4409 . . . . . . . 8 (𝑐 = 𝑤 → ⟨0, (#‘𝐴)⟩ = ⟨0, (#‘(1st𝑤))⟩)
2722, 26oveq12d 6668 . . . . . . 7 (𝑐 = 𝑤 → (𝐵 substr ⟨0, (#‘𝐴)⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩))
2827, 4fvmptg 6280 . . . . . 6 ((𝑤𝐶 ∧ ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩) ∈ V) → (𝐹𝑤) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩))
2920, 28syl 17 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) → (𝐹𝑤) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩))
3016, 29eqeq12d 2637 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) → ((𝐹𝑢) = (𝐹𝑤) ↔ ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩)))
311, 2, 3, 4clwlksfclwwlk1hashn 26959 . . . . . . . . 9 (𝑤𝐶 → (#‘(1st𝑤)) = 𝑁)
3231eqcomd 2628 . . . . . . . 8 (𝑤𝐶𝑁 = (#‘(1st𝑤)))
3332adantl 482 . . . . . . 7 ((𝑢𝐶𝑤𝐶) → 𝑁 = (#‘(1st𝑤)))
3433ad2antlr 763 . . . . . 6 ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) ∧ ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩)) → 𝑁 = (#‘(1st𝑤)))
35 prmnn 15388 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
3635ad2antlr 763 . . . . . . . 8 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) → 𝑁 ∈ ℕ)
3717adantl 482 . . . . . . . 8 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) → 𝑤𝐶)
381, 2, 3, 4clwlksf1clwwlklem 26968 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢𝐶𝑤𝐶) → (((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩) → ∀𝑖 ∈ (0...𝑁)((2nd𝑢)‘𝑖) = ((2nd𝑤)‘𝑖)))
3936, 6, 37, 38syl3anc 1326 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) → (((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩) → ∀𝑖 ∈ (0...𝑁)((2nd𝑢)‘𝑖) = ((2nd𝑤)‘𝑖)))
4039imp 445 . . . . . 6 ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) ∧ ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩)) → ∀𝑖 ∈ (0...𝑁)((2nd𝑢)‘𝑖) = ((2nd𝑤)‘𝑖))
41 fusgrusgr 26214 . . . . . . . . 9 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph )
42 usgruspgr 26073 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph )
4341, 42syl 17 . . . . . . . 8 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USPGraph )
4443ad3antrrr 766 . . . . . . 7 ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) ∧ ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩)) → 𝐺 ∈ USPGraph )
45 elrabi 3359 . . . . . . . . . . 11 (𝑢 ∈ {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} → 𝑢 ∈ (ClWalks‘𝐺))
46 clwlkwlk 26671 . . . . . . . . . . 11 (𝑢 ∈ (ClWalks‘𝐺) → 𝑢 ∈ (Walks‘𝐺))
4745, 46syl 17 . . . . . . . . . 10 (𝑢 ∈ {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} → 𝑢 ∈ (Walks‘𝐺))
4847, 3eleq2s 2719 . . . . . . . . 9 (𝑢𝐶𝑢 ∈ (Walks‘𝐺))
49 elrabi 3359 . . . . . . . . . . 11 (𝑤 ∈ {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} → 𝑤 ∈ (ClWalks‘𝐺))
50 clwlkwlk 26671 . . . . . . . . . . 11 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 ∈ (Walks‘𝐺))
5149, 50syl 17 . . . . . . . . . 10 (𝑤 ∈ {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} → 𝑤 ∈ (Walks‘𝐺))
5251, 3eleq2s 2719 . . . . . . . . 9 (𝑤𝐶𝑤 ∈ (Walks‘𝐺))
5348, 52anim12i 590 . . . . . . . 8 ((𝑢𝐶𝑤𝐶) → (𝑢 ∈ (Walks‘𝐺) ∧ 𝑤 ∈ (Walks‘𝐺)))
5453ad2antlr 763 . . . . . . 7 ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) ∧ ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩)) → (𝑢 ∈ (Walks‘𝐺) ∧ 𝑤 ∈ (Walks‘𝐺)))
551, 2, 3, 4clwlksfclwwlk1hashn 26959 . . . . . . . . . 10 (𝑢𝐶 → (#‘(1st𝑢)) = 𝑁)
5655eqcomd 2628 . . . . . . . . 9 (𝑢𝐶𝑁 = (#‘(1st𝑢)))
5756adantr 481 . . . . . . . 8 ((𝑢𝐶𝑤𝐶) → 𝑁 = (#‘(1st𝑢)))
5857ad2antlr 763 . . . . . . 7 ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) ∧ ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩)) → 𝑁 = (#‘(1st𝑢)))
59 uspgr2wlkeq 26542 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝑢 ∈ (Walks‘𝐺) ∧ 𝑤 ∈ (Walks‘𝐺)) ∧ 𝑁 = (#‘(1st𝑢))) → (𝑢 = 𝑤 ↔ (𝑁 = (#‘(1st𝑤)) ∧ ∀𝑖 ∈ (0...𝑁)((2nd𝑢)‘𝑖) = ((2nd𝑤)‘𝑖))))
6044, 54, 58, 59syl3anc 1326 . . . . . 6 ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) ∧ ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩)) → (𝑢 = 𝑤 ↔ (𝑁 = (#‘(1st𝑤)) ∧ ∀𝑖 ∈ (0...𝑁)((2nd𝑢)‘𝑖) = ((2nd𝑤)‘𝑖))))
6134, 40, 60mpbir2and 957 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) ∧ ((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩)) → 𝑢 = 𝑤)
6261ex 450 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) → (((2nd𝑢) substr ⟨0, (#‘(1st𝑢))⟩) = ((2nd𝑤) substr ⟨0, (#‘(1st𝑤))⟩) → 𝑢 = 𝑤))
6330, 62sylbid 230 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢𝐶𝑤𝐶)) → ((𝐹𝑢) = (𝐹𝑤) → 𝑢 = 𝑤))
6463ralrimivva 2971 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → ∀𝑢𝐶𝑤𝐶 ((𝐹𝑢) = (𝐹𝑤) → 𝑢 = 𝑤))
65 dff13 6512 . 2 (𝐹:𝐶1-1→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐶⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑢𝐶𝑤𝐶 ((𝐹𝑢) = (𝐹𝑤) → 𝑢 = 𝑤)))
665, 64, 65sylanbrc 698 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶1-1→(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cop 4183  cmpt 4729  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  0cc0 9936  cn 11020  ...cfz 12326  #chash 13117   substr csubstr 13295  cprime 15385   USPGraph cuspgr 26043   USGraph cusgr 26044   FinUSGraph cfusgr 26208  Walkscwlks 26492  ClWalkscclwlks 26666   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-wlks 26495  df-clwlks 26667  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  clwlksf1oclwwlk  26970
  Copyright terms: Public domain W3C validator