| Step | Hyp | Ref
| Expression |
| 1 | | clwlksfclwwlk.1 |
. . 3
⊢ 𝐴 = (1st ‘𝑐) |
| 2 | | clwlksfclwwlk.2 |
. . 3
⊢ 𝐵 = (2nd ‘𝑐) |
| 3 | | clwlksfclwwlk.c |
. . 3
⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} |
| 4 | | clwlksfclwwlk.f |
. . 3
⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 substr 〈0, (#‘𝐴)〉)) |
| 5 | 1, 2, 3, 4 | clwlksfclwwlk 26962 |
. 2
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶⟶(𝑁 ClWWalksN 𝐺)) |
| 6 | | simprl 794 |
. . . . . 6
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) → 𝑢 ∈ 𝐶) |
| 7 | | ovex 6678 |
. . . . . 6
⊢
((2nd ‘𝑢) substr 〈0, (#‘(1st
‘𝑢))〉) ∈
V |
| 8 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑐 = 𝑢 → (2nd ‘𝑐) = (2nd ‘𝑢)) |
| 9 | 2, 8 | syl5eq 2668 |
. . . . . . . 8
⊢ (𝑐 = 𝑢 → 𝐵 = (2nd ‘𝑢)) |
| 10 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑢 → (1st ‘𝑐) = (1st ‘𝑢)) |
| 11 | 1, 10 | syl5eq 2668 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑢 → 𝐴 = (1st ‘𝑢)) |
| 12 | 11 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑐 = 𝑢 → (#‘𝐴) = (#‘(1st ‘𝑢))) |
| 13 | 12 | opeq2d 4409 |
. . . . . . . 8
⊢ (𝑐 = 𝑢 → 〈0, (#‘𝐴)〉 = 〈0, (#‘(1st
‘𝑢))〉) |
| 14 | 9, 13 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑐 = 𝑢 → (𝐵 substr 〈0, (#‘𝐴)〉) = ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉)) |
| 15 | 14, 4 | fvmptg 6280 |
. . . . . 6
⊢ ((𝑢 ∈ 𝐶 ∧ ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) ∈ V) → (𝐹‘𝑢) = ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉)) |
| 16 | 6, 7, 15 | sylancl 694 |
. . . . 5
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) → (𝐹‘𝑢) = ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉)) |
| 17 | | simpr 477 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → 𝑤 ∈ 𝐶) |
| 18 | | ovex 6678 |
. . . . . . . 8
⊢
((2nd ‘𝑤) substr 〈0, (#‘(1st
‘𝑤))〉) ∈
V |
| 19 | 17, 18 | jctir 561 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (𝑤 ∈ 𝐶 ∧ ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉) ∈ V)) |
| 20 | 19 | adantl 482 |
. . . . . 6
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) → (𝑤 ∈ 𝐶 ∧ ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉) ∈ V)) |
| 21 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑐 = 𝑤 → (2nd ‘𝑐) = (2nd ‘𝑤)) |
| 22 | 2, 21 | syl5eq 2668 |
. . . . . . . 8
⊢ (𝑐 = 𝑤 → 𝐵 = (2nd ‘𝑤)) |
| 23 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑤 → (1st ‘𝑐) = (1st ‘𝑤)) |
| 24 | 1, 23 | syl5eq 2668 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑤 → 𝐴 = (1st ‘𝑤)) |
| 25 | 24 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑐 = 𝑤 → (#‘𝐴) = (#‘(1st ‘𝑤))) |
| 26 | 25 | opeq2d 4409 |
. . . . . . . 8
⊢ (𝑐 = 𝑤 → 〈0, (#‘𝐴)〉 = 〈0, (#‘(1st
‘𝑤))〉) |
| 27 | 22, 26 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑐 = 𝑤 → (𝐵 substr 〈0, (#‘𝐴)〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉)) |
| 28 | 27, 4 | fvmptg 6280 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐶 ∧ ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉) ∈ V) → (𝐹‘𝑤) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉)) |
| 29 | 20, 28 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) → (𝐹‘𝑤) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉)) |
| 30 | 16, 29 | eqeq12d 2637 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) → ((𝐹‘𝑢) = (𝐹‘𝑤) ↔ ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉))) |
| 31 | 1, 2, 3, 4 | clwlksfclwwlk1hashn 26959 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝐶 → (#‘(1st
‘𝑤)) = 𝑁) |
| 32 | 31 | eqcomd 2628 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝐶 → 𝑁 = (#‘(1st ‘𝑤))) |
| 33 | 32 | adantl 482 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → 𝑁 = (#‘(1st ‘𝑤))) |
| 34 | 33 | ad2antlr 763 |
. . . . . 6
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) ∧ ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉)) → 𝑁 = (#‘(1st ‘𝑤))) |
| 35 | | prmnn 15388 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℙ → 𝑁 ∈
ℕ) |
| 36 | 35 | ad2antlr 763 |
. . . . . . . 8
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) → 𝑁 ∈ ℕ) |
| 37 | 17 | adantl 482 |
. . . . . . . 8
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) → 𝑤 ∈ 𝐶) |
| 38 | 1, 2, 3, 4 | clwlksf1clwwlklem 26968 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉) → ∀𝑖 ∈ (0...𝑁)((2nd ‘𝑢)‘𝑖) = ((2nd ‘𝑤)‘𝑖))) |
| 39 | 36, 6, 37, 38 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) → (((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉) → ∀𝑖 ∈ (0...𝑁)((2nd ‘𝑢)‘𝑖) = ((2nd ‘𝑤)‘𝑖))) |
| 40 | 39 | imp 445 |
. . . . . 6
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) ∧ ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉)) → ∀𝑖 ∈ (0...𝑁)((2nd ‘𝑢)‘𝑖) = ((2nd ‘𝑤)‘𝑖)) |
| 41 | | fusgrusgr 26214 |
. . . . . . . . 9
⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph
) |
| 42 | | usgruspgr 26073 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph
) |
| 43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USPGraph
) |
| 44 | 43 | ad3antrrr 766 |
. . . . . . 7
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) ∧ ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉)) → 𝐺 ∈ USPGraph ) |
| 45 | | elrabi 3359 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} → 𝑢 ∈ (ClWalks‘𝐺)) |
| 46 | | clwlkwlk 26671 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ (ClWalks‘𝐺) → 𝑢 ∈ (Walks‘𝐺)) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} → 𝑢 ∈ (Walks‘𝐺)) |
| 48 | 47, 3 | eleq2s 2719 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐶 → 𝑢 ∈ (Walks‘𝐺)) |
| 49 | | elrabi 3359 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} → 𝑤 ∈ (ClWalks‘𝐺)) |
| 50 | | clwlkwlk 26671 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 ∈ (Walks‘𝐺)) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝑤 ∈ {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁} → 𝑤 ∈ (Walks‘𝐺)) |
| 52 | 51, 3 | eleq2s 2719 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝐶 → 𝑤 ∈ (Walks‘𝐺)) |
| 53 | 48, 52 | anim12i 590 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (𝑢 ∈ (Walks‘𝐺) ∧ 𝑤 ∈ (Walks‘𝐺))) |
| 54 | 53 | ad2antlr 763 |
. . . . . . 7
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) ∧ ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉)) → (𝑢 ∈ (Walks‘𝐺) ∧ 𝑤 ∈ (Walks‘𝐺))) |
| 55 | 1, 2, 3, 4 | clwlksfclwwlk1hashn 26959 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝐶 → (#‘(1st
‘𝑢)) = 𝑁) |
| 56 | 55 | eqcomd 2628 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐶 → 𝑁 = (#‘(1st ‘𝑢))) |
| 57 | 56 | adantr 481 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → 𝑁 = (#‘(1st ‘𝑢))) |
| 58 | 57 | ad2antlr 763 |
. . . . . . 7
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) ∧ ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉)) → 𝑁 = (#‘(1st ‘𝑢))) |
| 59 | | uspgr2wlkeq 26542 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ (𝑢 ∈ (Walks‘𝐺) ∧ 𝑤 ∈ (Walks‘𝐺)) ∧ 𝑁 = (#‘(1st ‘𝑢))) → (𝑢 = 𝑤 ↔ (𝑁 = (#‘(1st ‘𝑤)) ∧ ∀𝑖 ∈ (0...𝑁)((2nd ‘𝑢)‘𝑖) = ((2nd ‘𝑤)‘𝑖)))) |
| 60 | 44, 54, 58, 59 | syl3anc 1326 |
. . . . . 6
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) ∧ ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉)) → (𝑢 = 𝑤 ↔ (𝑁 = (#‘(1st ‘𝑤)) ∧ ∀𝑖 ∈ (0...𝑁)((2nd ‘𝑢)‘𝑖) = ((2nd ‘𝑤)‘𝑖)))) |
| 61 | 34, 40, 60 | mpbir2and 957 |
. . . . 5
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) ∧ ((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉)) → 𝑢 = 𝑤) |
| 62 | 61 | ex 450 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) → (((2nd ‘𝑢) substr 〈0,
(#‘(1st ‘𝑢))〉) = ((2nd ‘𝑤) substr 〈0,
(#‘(1st ‘𝑤))〉) → 𝑢 = 𝑤)) |
| 63 | 30, 62 | sylbid 230 |
. . 3
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑢 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶)) → ((𝐹‘𝑢) = (𝐹‘𝑤) → 𝑢 = 𝑤)) |
| 64 | 63 | ralrimivva 2971 |
. 2
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) →
∀𝑢 ∈ 𝐶 ∀𝑤 ∈ 𝐶 ((𝐹‘𝑢) = (𝐹‘𝑤) → 𝑢 = 𝑤)) |
| 65 | | dff13 6512 |
. 2
⊢ (𝐹:𝐶–1-1→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐶⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑢 ∈ 𝐶 ∀𝑤 ∈ 𝐶 ((𝐹‘𝑢) = (𝐹‘𝑤) → 𝑢 = 𝑤))) |
| 66 | 5, 64, 65 | sylanbrc 698 |
1
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶–1-1→(𝑁 ClWWalksN 𝐺)) |