![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmpcov | Structured version Visualization version GIF version |
Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.) |
Ref | Expression |
---|---|
iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cmpcov | ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4444 | . . . . 5 ⊢ (𝑟 = 𝑆 → ∪ 𝑟 = ∪ 𝑆) | |
2 | 1 | eqeq2d 2632 | . . . 4 ⊢ (𝑟 = 𝑆 → (𝑋 = ∪ 𝑟 ↔ 𝑋 = ∪ 𝑆)) |
3 | pweq 4161 | . . . . . 6 ⊢ (𝑟 = 𝑆 → 𝒫 𝑟 = 𝒫 𝑆) | |
4 | 3 | ineq1d 3813 | . . . . 5 ⊢ (𝑟 = 𝑆 → (𝒫 𝑟 ∩ Fin) = (𝒫 𝑆 ∩ Fin)) |
5 | 4 | rexeqdv 3145 | . . . 4 ⊢ (𝑟 = 𝑆 → (∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠 ↔ ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠)) |
6 | 2, 5 | imbi12d 334 | . . 3 ⊢ (𝑟 = 𝑆 → ((𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠) ↔ (𝑋 = ∪ 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠))) |
7 | iscmp.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | iscmp 21191 | . . . . 5 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠))) |
9 | 8 | simprbi 480 | . . . 4 ⊢ (𝐽 ∈ Comp → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠)) |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠)) |
11 | simpr 477 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → 𝑆 ⊆ 𝐽) | |
12 | ssexg 4804 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐽 ∧ 𝐽 ∈ Comp) → 𝑆 ∈ V) | |
13 | 12 | ancoms 469 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → 𝑆 ∈ V) |
14 | elpwg 4166 | . . . . 5 ⊢ (𝑆 ∈ V → (𝑆 ∈ 𝒫 𝐽 ↔ 𝑆 ⊆ 𝐽)) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → (𝑆 ∈ 𝒫 𝐽 ↔ 𝑆 ⊆ 𝐽)) |
16 | 11, 15 | mpbird 247 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → 𝑆 ∈ 𝒫 𝐽) |
17 | 6, 10, 16 | rspcdva 3316 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → (𝑋 = ∪ 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠)) |
18 | 17 | 3impia 1261 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 Fincfn 7955 Topctop 20698 Compccmp 21189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-uni 4437 df-cmp 21190 |
This theorem is referenced by: cmpcov2 21193 cncmp 21195 discmp 21201 cmpcld 21205 sscmp 21208 comppfsc 21335 alexsubALTlem1 21851 ptcmplem3 21858 lebnum 22763 heibor1 33609 |
Copyright terms: Public domain | W3C validator |