MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcld Structured version   Visualization version   GIF version

Theorem cmpcld 21205
Description: A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009.)
Assertion
Ref Expression
cmpcld ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽t 𝑆) ∈ Comp)

Proof of Theorem cmpcld
Dummy variables 𝑡 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 selpw 4165 . . . 4 (𝑠 ∈ 𝒫 𝐽𝑠𝐽)
2 simp1l 1085 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 ∈ Comp)
3 simp2 1062 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑠𝐽)
4 eqid 2622 . . . . . . . . . . . 12 𝐽 = 𝐽
54cldopn 20835 . . . . . . . . . . 11 (𝑆 ∈ (Clsd‘𝐽) → ( 𝐽𝑆) ∈ 𝐽)
65adantl 482 . . . . . . . . . 10 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → ( 𝐽𝑆) ∈ 𝐽)
763ad2ant1 1082 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ( 𝐽𝑆) ∈ 𝐽)
87snssd 4340 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → {( 𝐽𝑆)} ⊆ 𝐽)
93, 8unssd 3789 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (𝑠 ∪ {( 𝐽𝑆)}) ⊆ 𝐽)
10 simp3 1063 . . . . . . . . . . . . 13 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑆 𝑠)
11 uniss 4458 . . . . . . . . . . . . . 14 (𝑠𝐽 𝑠 𝐽)
12113ad2ant2 1083 . . . . . . . . . . . . 13 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑠 𝐽)
1310, 12sstrd 3613 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝑆 𝐽)
14 undif 4049 . . . . . . . . . . . 12 (𝑆 𝐽 ↔ (𝑆 ∪ ( 𝐽𝑆)) = 𝐽)
1513, 14sylib 208 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (𝑆 ∪ ( 𝐽𝑆)) = 𝐽)
16 unss1 3782 . . . . . . . . . . . 12 (𝑆 𝑠 → (𝑆 ∪ ( 𝐽𝑆)) ⊆ ( 𝑠 ∪ ( 𝐽𝑆)))
17163ad2ant3 1084 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (𝑆 ∪ ( 𝐽𝑆)) ⊆ ( 𝑠 ∪ ( 𝐽𝑆)))
1815, 17eqsstr3d 3640 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 ⊆ ( 𝑠 ∪ ( 𝐽𝑆)))
19 difss 3737 . . . . . . . . . . 11 ( 𝐽𝑆) ⊆ 𝐽
20 unss 3787 . . . . . . . . . . 11 (( 𝑠 𝐽 ∧ ( 𝐽𝑆) ⊆ 𝐽) ↔ ( 𝑠 ∪ ( 𝐽𝑆)) ⊆ 𝐽)
2112, 19, 20sylanblc 696 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ( 𝑠 ∪ ( 𝐽𝑆)) ⊆ 𝐽)
2218, 21eqssd 3620 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 = ( 𝑠 ∪ ( 𝐽𝑆)))
23 uniexg 6955 . . . . . . . . . . . . 13 (𝐽 ∈ Comp → 𝐽 ∈ V)
2423ad2antrr 762 . . . . . . . . . . . 12 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽) → 𝐽 ∈ V)
25243adant3 1081 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 ∈ V)
26 difexg 4808 . . . . . . . . . . 11 ( 𝐽 ∈ V → ( 𝐽𝑆) ∈ V)
27 unisng 4452 . . . . . . . . . . 11 (( 𝐽𝑆) ∈ V → {( 𝐽𝑆)} = ( 𝐽𝑆))
2825, 26, 273syl 18 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → {( 𝐽𝑆)} = ( 𝐽𝑆))
2928uneq2d 3767 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ( 𝑠 {( 𝐽𝑆)}) = ( 𝑠 ∪ ( 𝐽𝑆)))
3022, 29eqtr4d 2659 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 = ( 𝑠 {( 𝐽𝑆)}))
31 uniun 4456 . . . . . . . 8 (𝑠 ∪ {( 𝐽𝑆)}) = ( 𝑠 {( 𝐽𝑆)})
3230, 31syl6eqr 2674 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → 𝐽 = (𝑠 ∪ {( 𝐽𝑆)}))
334cmpcov 21192 . . . . . . 7 ((𝐽 ∈ Comp ∧ (𝑠 ∪ {( 𝐽𝑆)}) ⊆ 𝐽 𝐽 = (𝑠 ∪ {( 𝐽𝑆)})) → ∃𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) 𝐽 = 𝑢)
342, 9, 32, 33syl3anc 1326 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ∃𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) 𝐽 = 𝑢)
35 elfpw 8268 . . . . . . . 8 (𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) ↔ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin))
36 simp2l 1087 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}))
37 uncom 3757 . . . . . . . . . . . 12 (𝑠 ∪ {( 𝐽𝑆)}) = ({( 𝐽𝑆)} ∪ 𝑠)
3836, 37syl6sseq 3651 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑢 ⊆ ({( 𝐽𝑆)} ∪ 𝑠))
39 ssundif 4052 . . . . . . . . . . 11 (𝑢 ⊆ ({( 𝐽𝑆)} ∪ 𝑠) ↔ (𝑢 ∖ {( 𝐽𝑆)}) ⊆ 𝑠)
4038, 39sylib 208 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑢 ∖ {( 𝐽𝑆)}) ⊆ 𝑠)
41 diffi 8192 . . . . . . . . . . . 12 (𝑢 ∈ Fin → (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin)
4241ad2antll 765 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin)) → (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin)
43423adant3 1081 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin)
44 elfpw 8268 . . . . . . . . . 10 ((𝑢 ∖ {( 𝐽𝑆)}) ∈ (𝒫 𝑠 ∩ Fin) ↔ ((𝑢 ∖ {( 𝐽𝑆)}) ⊆ 𝑠 ∧ (𝑢 ∖ {( 𝐽𝑆)}) ∈ Fin))
4540, 43, 44sylanbrc 698 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑢 ∖ {( 𝐽𝑆)}) ∈ (𝒫 𝑠 ∩ Fin))
46103ad2ant1 1082 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑆 𝑠)
47123ad2ant1 1082 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑠 𝐽)
48 simp3 1063 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝐽 = 𝑢)
4947, 48sseqtrd 3641 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑠 𝑢)
5046, 49sstrd 3613 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑆 𝑢)
5150sselda 3603 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → 𝑣 𝑢)
52 eluni 4439 . . . . . . . . . . . . . 14 (𝑣 𝑢 ↔ ∃𝑤(𝑣𝑤𝑤𝑢))
5351, 52sylib 208 . . . . . . . . . . . . 13 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ∃𝑤(𝑣𝑤𝑤𝑢))
54 simpl 473 . . . . . . . . . . . . . . . 16 ((𝑣𝑤𝑤𝑢) → 𝑣𝑤)
5554a1i 11 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → 𝑣𝑤))
56 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑤𝑤𝑢) → 𝑤𝑢)
5756a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → 𝑤𝑢))
58 elndif 3734 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣𝑆 → ¬ 𝑣 ∈ ( 𝐽𝑆))
5958ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) ∧ 𝑣𝑤) → ¬ 𝑣 ∈ ( 𝐽𝑆))
60 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = ( 𝐽𝑆) → (𝑣𝑤𝑣 ∈ ( 𝐽𝑆)))
6160biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ( 𝐽𝑆) → (𝑣𝑤𝑣 ∈ ( 𝐽𝑆)))
6261a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (𝑤 = ( 𝐽𝑆) → (𝑣𝑤𝑣 ∈ ( 𝐽𝑆))))
6362com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (𝑣𝑤 → (𝑤 = ( 𝐽𝑆) → 𝑣 ∈ ( 𝐽𝑆))))
6463imp 445 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) ∧ 𝑣𝑤) → (𝑤 = ( 𝐽𝑆) → 𝑣 ∈ ( 𝐽𝑆)))
6559, 64mtod 189 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) ∧ 𝑣𝑤) → ¬ 𝑤 = ( 𝐽𝑆))
6665ex 450 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (𝑣𝑤 → ¬ 𝑤 = ( 𝐽𝑆)))
6766adantrd 484 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → ¬ 𝑤 = ( 𝐽𝑆)))
68 velsn 4193 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ {( 𝐽𝑆)} ↔ 𝑤 = ( 𝐽𝑆))
6968notbii 310 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ {( 𝐽𝑆)} ↔ ¬ 𝑤 = ( 𝐽𝑆))
7067, 69syl6ibr 242 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → ¬ 𝑤 ∈ {( 𝐽𝑆)}))
7157, 70jcad 555 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → (𝑤𝑢 ∧ ¬ 𝑤 ∈ {( 𝐽𝑆)})))
72 eldif 3584 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}) ↔ (𝑤𝑢 ∧ ¬ 𝑤 ∈ {( 𝐽𝑆)}))
7371, 72syl6ibr 242 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → 𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)})))
7455, 73jcad 555 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ((𝑣𝑤𝑤𝑢) → (𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}))))
7574eximdv 1846 . . . . . . . . . . . . 13 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → (∃𝑤(𝑣𝑤𝑤𝑢) → ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}))))
7653, 75mpd 15 . . . . . . . . . . . 12 (((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) ∧ 𝑣𝑆) → ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)})))
7776ex 450 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑣𝑆 → ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)}))))
78 eluni 4439 . . . . . . . . . . 11 (𝑣 (𝑢 ∖ {( 𝐽𝑆)}) ↔ ∃𝑤(𝑣𝑤𝑤 ∈ (𝑢 ∖ {( 𝐽𝑆)})))
7977, 78syl6ibr 242 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → (𝑣𝑆𝑣 (𝑢 ∖ {( 𝐽𝑆)})))
8079ssrdv 3609 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → 𝑆 (𝑢 ∖ {( 𝐽𝑆)}))
81 unieq 4444 . . . . . . . . . . 11 (𝑡 = (𝑢 ∖ {( 𝐽𝑆)}) → 𝑡 = (𝑢 ∖ {( 𝐽𝑆)}))
8281sseq2d 3633 . . . . . . . . . 10 (𝑡 = (𝑢 ∖ {( 𝐽𝑆)}) → (𝑆 𝑡𝑆 (𝑢 ∖ {( 𝐽𝑆)})))
8382rspcev 3309 . . . . . . . . 9 (((𝑢 ∖ {( 𝐽𝑆)}) ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑆 (𝑢 ∖ {( 𝐽𝑆)})) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
8445, 80, 83syl2anc 693 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ (𝑢 ⊆ (𝑠 ∪ {( 𝐽𝑆)}) ∧ 𝑢 ∈ Fin) ∧ 𝐽 = 𝑢) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
8535, 84syl3an2b 1363 . . . . . . 7 ((((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) ∧ 𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) ∧ 𝐽 = 𝑢) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
8685rexlimdv3a 3033 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → (∃𝑢 ∈ (𝒫 (𝑠 ∪ {( 𝐽𝑆)}) ∩ Fin) 𝐽 = 𝑢 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡))
8734, 86mpd 15 . . . . 5 (((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) ∧ 𝑠𝐽𝑆 𝑠) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)
88873exp 1264 . . . 4 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑠𝐽 → (𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
891, 88syl5bi 232 . . 3 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑠 ∈ 𝒫 𝐽 → (𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
9089ralrimiv 2965 . 2 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → ∀𝑠 ∈ 𝒫 𝐽(𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡))
91 cmptop 21198 . . 3 (𝐽 ∈ Comp → 𝐽 ∈ Top)
924cldss 20833 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
934cmpsub 21203 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑠 ∈ 𝒫 𝐽(𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
9491, 92, 93syl2an 494 . 2 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑠 ∈ 𝒫 𝐽(𝑆 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)𝑆 𝑡)))
9590, 94mpbird 247 1 ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽t 𝑆) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177   cuni 4436  cfv 5888  (class class class)co 6650  Fincfn 7955  t crest 16081  Topctop 20698  Clsdccld 20820  Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cmp 21190
This theorem is referenced by:  hausllycmp  21297  cldllycmp  21298  txkgen  21455  cmphaushmeo  21603  cnheiborlem  22753  cmpcmet  23116  stoweidlem28  40245  stoweidlem50  40267  stoweidlem57  40274
  Copyright terms: Public domain W3C validator