| Step | Hyp | Ref
| Expression |
| 1 | | lebnum.c |
. . 3
⊢ (𝜑 → 𝐽 ∈ Comp) |
| 2 | | lebnum.s |
. . 3
⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
| 3 | | lebnum.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 4 | | metxmet 22139 |
. . . . . 6
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 6 | | lebnum.j |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐷) |
| 7 | 6 | mopnuni 22246 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 8 | 5, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 9 | | lebnum.u |
. . . 4
⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
| 10 | 8, 9 | eqtr3d 2658 |
. . 3
⊢ (𝜑 → ∪ 𝐽 =
∪ 𝑈) |
| 11 | | eqid 2622 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 12 | 11 | cmpcov 21192 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑈) → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin)∪ 𝐽 =
∪ 𝑤) |
| 13 | 1, 2, 10, 12 | syl3anc 1326 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin)∪
𝐽 = ∪ 𝑤) |
| 14 | | 1rp 11836 |
. . . 4
⊢ 1 ∈
ℝ+ |
| 15 | | inss1 3833 |
. . . . . . . . . 10
⊢
(𝒫 𝑈 ∩
Fin) ⊆ 𝒫 𝑈 |
| 16 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) → 𝑤 ∈ (𝒫 𝑈 ∩ Fin)) |
| 17 | 15, 16 | sseldi 3601 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) → 𝑤 ∈ 𝒫 𝑈) |
| 18 | 17 | elpwid 4170 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) → 𝑤 ⊆ 𝑈) |
| 19 | 18 | ad2antrr 762 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 𝑤 ⊆ 𝑈) |
| 20 | | simplr 792 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ 𝑤) |
| 21 | 19, 20 | sseldd 3604 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ 𝑈) |
| 22 | 5 | ad3antrrr 766 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 23 | | simpr 477 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 24 | | rpxr 11840 |
. . . . . . . 8
⊢ (1 ∈
ℝ+ → 1 ∈ ℝ*) |
| 25 | 14, 24 | mp1i 13 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 1 ∈
ℝ*) |
| 26 | | blssm 22223 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ*) →
(𝑥(ball‘𝐷)1) ⊆ 𝑋) |
| 27 | 22, 23, 25, 26 | syl3anc 1326 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋) |
| 28 | | sseq2 3627 |
. . . . . . 7
⊢ (𝑢 = 𝑋 → ((𝑥(ball‘𝐷)1) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑋)) |
| 29 | 28 | rspcev 3309 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ (𝑥(ball‘𝐷)1) ⊆ 𝑋) → ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) |
| 30 | 21, 27, 29 | syl2anc 693 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) |
| 31 | 30 | ralrimiva 2966 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) |
| 32 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑑 = 1 → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)1)) |
| 33 | 32 | sseq1d 3632 |
. . . . . . 7
⊢ (𝑑 = 1 → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑢)) |
| 34 | 33 | rexbidv 3052 |
. . . . . 6
⊢ (𝑑 = 1 → (∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)) |
| 35 | 34 | ralbidv 2986 |
. . . . 5
⊢ (𝑑 = 1 → (∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)) |
| 36 | 35 | rspcev 3309 |
. . . 4
⊢ ((1
∈ ℝ+ ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
| 37 | 14, 31, 36 | sylancr 695 |
. . 3
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
| 38 | 3 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝐷 ∈ (Met‘𝑋)) |
| 39 | 1 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝐽 ∈ Comp) |
| 40 | 18 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑤 ⊆ 𝑈) |
| 41 | 2 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑈 ⊆ 𝐽) |
| 42 | 40, 41 | sstrd 3613 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑤 ⊆ 𝐽) |
| 43 | 8 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑋 = ∪ 𝐽) |
| 44 | | simplrr 801 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → ∪ 𝐽 = ∪
𝑤) |
| 45 | 43, 44 | eqtrd 2656 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑋 = ∪ 𝑤) |
| 46 | | inss2 3834 |
. . . . . . 7
⊢
(𝒫 𝑈 ∩
Fin) ⊆ Fin |
| 47 | 46, 16 | sseldi 3601 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) → 𝑤 ∈ Fin) |
| 48 | 47 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑤 ∈ Fin) |
| 49 | | simpr 477 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → ¬ 𝑋 ∈ 𝑤) |
| 50 | | eqid 2622 |
. . . . 5
⊢ (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 51 | | eqid 2622 |
. . . . 5
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
| 52 | 6, 38, 39, 42, 45, 48, 49, 50, 51 | lebnumlem3 22762 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
| 53 | | ssrexv 3667 |
. . . . . . 7
⊢ (𝑤 ⊆ 𝑈 → (∃𝑢 ∈ 𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)) |
| 54 | 40, 53 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → (∃𝑢 ∈ 𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)) |
| 55 | 54 | ralimdv 2963 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → (∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)) |
| 56 | 55 | reximdv 3016 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → (∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)) |
| 57 | 52, 56 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
| 58 | 37, 57 | pm2.61dan 832 |
. 2
⊢ ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
| 59 | 13, 58 | rexlimddv 3035 |
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |