MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvf1o Structured version   Visualization version   GIF version

Theorem cnvf1o 7276
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2 (𝑥𝐴 {𝑥}) = (𝑥𝐴 {𝑥})
2 snex 4908 . . . . 5 {𝑥} ∈ V
32cnvex 7113 . . . 4 {𝑥} ∈ V
43uniex 6953 . . 3 {𝑥} ∈ V
54a1i 11 . 2 ((Rel 𝐴𝑥𝐴) → {𝑥} ∈ V)
6 snex 4908 . . . . 5 {𝑦} ∈ V
76cnvex 7113 . . . 4 {𝑦} ∈ V
87uniex 6953 . . 3 {𝑦} ∈ V
98a1i 11 . 2 ((Rel 𝐴𝑦𝐴) → {𝑦} ∈ V)
10 cnvf1olem 7275 . . 3 ((Rel 𝐴 ∧ (𝑥𝐴𝑦 = {𝑥})) → (𝑦𝐴𝑥 = {𝑦}))
11 relcnv 5503 . . . . 5 Rel 𝐴
12 simpr 477 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑦𝐴𝑥 = {𝑦}))
13 cnvf1olem 7275 . . . . 5 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
1411, 12, 13sylancr 695 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
15 dfrel2 5583 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
16 eleq2 2690 . . . . . . 7 (𝐴 = 𝐴 → (𝑥𝐴𝑥𝐴))
1715, 16sylbi 207 . . . . . 6 (Rel 𝐴 → (𝑥𝐴𝑥𝐴))
1817anbi1d 741 . . . . 5 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
1918adantr 481 . . . 4 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑥𝐴𝑦 = {𝑥})))
2014, 19mpbid 222 . . 3 ((Rel 𝐴 ∧ (𝑦𝐴𝑥 = {𝑦})) → (𝑥𝐴𝑦 = {𝑥}))
2110, 20impbida 877 . 2 (Rel 𝐴 → ((𝑥𝐴𝑦 = {𝑥}) ↔ (𝑦𝐴𝑥 = {𝑦})))
221, 5, 9, 21f1od 6885 1 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177   cuni 4436  cmpt 4729  ccnv 5113  Rel wrel 5119  1-1-ontowf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  tposf12  7377  cnven  8032  xpcomf1o  8049  fsumcnv  14504  fprodcnv  14713  gsumcom2  18374
  Copyright terms: Public domain W3C validator