MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem1 Structured version   Visualization version   GIF version

Theorem fparlem1 7277
Description: Lemma for fpar 7281. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem1 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)

Proof of Theorem fparlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvres 6207 . . . . . 6 (𝑦 ∈ (V × V) → ((1st ↾ (V × V))‘𝑦) = (1st𝑦))
21eqeq1d 2624 . . . . 5 (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ (1st𝑦) = 𝑥))
3 vex 3203 . . . . . . 7 𝑥 ∈ V
43elsn2 4211 . . . . . 6 ((1st𝑦) ∈ {𝑥} ↔ (1st𝑦) = 𝑥)
5 fvex 6201 . . . . . . 7 (2nd𝑦) ∈ V
65biantru 526 . . . . . 6 ((1st𝑦) ∈ {𝑥} ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V))
74, 6bitr3i 266 . . . . 5 ((1st𝑦) = 𝑥 ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V))
82, 7syl6bb 276 . . . 4 (𝑦 ∈ (V × V) → (((1st ↾ (V × V))‘𝑦) = 𝑥 ↔ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
98pm5.32i 669 . . 3 ((𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥) ↔ (𝑦 ∈ (V × V) ∧ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
10 f1stres 7190 . . . 4 (1st ↾ (V × V)):(V × V)⟶V
11 ffn 6045 . . . 4 ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V))
12 fniniseg 6338 . . . 4 ((1st ↾ (V × V)) Fn (V × V) → (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥)))
1310, 11, 12mp2b 10 . . 3 (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ (𝑦 ∈ (V × V) ∧ ((1st ↾ (V × V))‘𝑦) = 𝑥))
14 elxp7 7201 . . 3 (𝑦 ∈ ({𝑥} × V) ↔ (𝑦 ∈ (V × V) ∧ ((1st𝑦) ∈ {𝑥} ∧ (2nd𝑦) ∈ V)))
159, 13, 143bitr4i 292 . 2 (𝑦 ∈ ((1st ↾ (V × V)) “ {𝑥}) ↔ 𝑦 ∈ ({𝑥} × V))
1615eqriv 2619 1 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177   × cxp 5112  ccnv 5113  cres 5116  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  1st c1st 7166  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  fparlem3  7279
  Copyright terms: Public domain W3C validator