MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvmot Structured version   Visualization version   GIF version

Theorem cnvmot 25436
Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motco.2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
cnvmot (𝜑𝐹 ∈ (𝐺Ismt𝐺))

Proof of Theorem cnvmot
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismot.p . . . 4 𝑃 = (Base‘𝐺)
2 ismot.m . . . 4 = (dist‘𝐺)
3 motgrp.1 . . . 4 (𝜑𝐺𝑉)
4 motco.2 . . . 4 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
51, 2, 3, 4motf1o 25433 . . 3 (𝜑𝐹:𝑃1-1-onto𝑃)
6 f1ocnv 6149 . . 3 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃1-1-onto𝑃)
75, 6syl 17 . 2 (𝜑𝐹:𝑃1-1-onto𝑃)
83adantr 481 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐺𝑉)
9 f1of 6137 . . . . . . . 8 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃𝑃)
107, 9syl 17 . . . . . . 7 (𝜑𝐹:𝑃𝑃)
1110adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹:𝑃𝑃)
12 simprl 794 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑎𝑃)
1311, 12ffvelrnd 6360 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹𝑎) ∈ 𝑃)
14 simprr 796 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑏𝑃)
1511, 14ffvelrnd 6360 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹𝑏) ∈ 𝑃)
164adantr 481 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺))
171, 2, 8, 13, 15, 16motcgr 25431 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = ((𝐹𝑎) (𝐹𝑏)))
185adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹:𝑃1-1-onto𝑃)
19 f1ocnvfv2 6533 . . . . . 6 ((𝐹:𝑃1-1-onto𝑃𝑎𝑃) → (𝐹‘(𝐹𝑎)) = 𝑎)
2018, 12, 19syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹‘(𝐹𝑎)) = 𝑎)
21 f1ocnvfv2 6533 . . . . . 6 ((𝐹:𝑃1-1-onto𝑃𝑏𝑃) → (𝐹‘(𝐹𝑏)) = 𝑏)
2218, 14, 21syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹‘(𝐹𝑏)) = 𝑏)
2320, 22oveq12d 6668 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = (𝑎 𝑏))
2417, 23eqtr3d 2658 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))
2524ralrimivva 2971 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))
261, 2ismot 25430 . . 3 (𝐺𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
273, 26syl 17 . 2 (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
287, 25, 27mpbir2and 957 1 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  ccnv 5113  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  Ismtcismt 25427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ismt 25428
This theorem is referenced by:  motgrp  25438
  Copyright terms: Public domain W3C validator