MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsym Structured version   Visualization version   GIF version

Theorem cnvsym 5510
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvsym (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cnvsym
StepHypRef Expression
1 alcom 2037 . 2 (∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
2 relcnv 5503 . . 3 Rel 𝑅
3 ssrel 5207 . . 3 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅)))
42, 3ax-mp 5 . 2 (𝑅𝑅 ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
5 vex 3203 . . . . . 6 𝑦 ∈ V
6 vex 3203 . . . . . 6 𝑥 ∈ V
75, 6brcnv 5305 . . . . 5 (𝑦𝑅𝑥𝑥𝑅𝑦)
8 df-br 4654 . . . . 5 (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
97, 8bitr3i 266 . . . 4 (𝑥𝑅𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
10 df-br 4654 . . . 4 (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
119, 10imbi12i 340 . . 3 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
12112albii 1748 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
131, 4, 123bitr4i 292 1 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wcel 1990  wss 3574  cop 4183   class class class wbr 4653  ccnv 5113  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by:  dfer2  7743  relcnveq3  34092  relcnveq  34093  relcnveq2  34094
  Copyright terms: Public domain W3C validator