MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intasym Structured version   Visualization version   GIF version

Theorem intasym 5511
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intasym ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem intasym
StepHypRef Expression
1 relcnv 5503 . . 3 Rel 𝑅
2 relin2 5237 . . 3 (Rel 𝑅 → Rel (𝑅𝑅))
3 ssrel 5207 . . 3 (Rel (𝑅𝑅) → ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I )))
41, 2, 3mp2b 10 . 2 ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ))
5 elin 3796 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
6 df-br 4654 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 vex 3203 . . . . . . . 8 𝑥 ∈ V
8 vex 3203 . . . . . . . 8 𝑦 ∈ V
97, 8brcnv 5305 . . . . . . 7 (𝑥𝑅𝑦𝑦𝑅𝑥)
10 df-br 4654 . . . . . . 7 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
119, 10bitr3i 266 . . . . . 6 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
126, 11anbi12i 733 . . . . 5 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
135, 12bitr4i 267 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
14 df-br 4654 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
158ideq 5274 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
1614, 15bitr3i 266 . . . 4 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
1713, 16imbi12i 340 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
18172albii 1748 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
194, 18bitri 264 1 ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wcel 1990  cin 3573  wss 3574  cop 4183   class class class wbr 4653   I cid 5023  ccnv 5113  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator