MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coflim Structured version   Visualization version   GIF version

Theorem coflim 9083
Description: A simpler expression for the cofinality predicate, at a limit ordinal. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
coflim ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem coflim
StepHypRef Expression
1 eleq2 2690 . . . . 5 ( 𝐵 = 𝐴 → (𝑥 𝐵𝑥𝐴))
21biimprd 238 . . . 4 ( 𝐵 = 𝐴 → (𝑥𝐴𝑥 𝐵))
3 eluni2 4440 . . . . 5 (𝑥 𝐵 ↔ ∃𝑦𝐵 𝑥𝑦)
4 limord 5784 . . . . . . . . 9 (Lim 𝐴 → Ord 𝐴)
5 ssel2 3598 . . . . . . . . 9 ((𝐵𝐴𝑦𝐵) → 𝑦𝐴)
6 ordelon 5747 . . . . . . . . 9 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
74, 5, 6syl2an 494 . . . . . . . 8 ((Lim 𝐴 ∧ (𝐵𝐴𝑦𝐵)) → 𝑦 ∈ On)
87expr 643 . . . . . . 7 ((Lim 𝐴𝐵𝐴) → (𝑦𝐵𝑦 ∈ On))
9 onelss 5766 . . . . . . 7 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
108, 9syl6 35 . . . . . 6 ((Lim 𝐴𝐵𝐴) → (𝑦𝐵 → (𝑥𝑦𝑥𝑦)))
1110reximdvai 3015 . . . . 5 ((Lim 𝐴𝐵𝐴) → (∃𝑦𝐵 𝑥𝑦 → ∃𝑦𝐵 𝑥𝑦))
123, 11syl5bi 232 . . . 4 ((Lim 𝐴𝐵𝐴) → (𝑥 𝐵 → ∃𝑦𝐵 𝑥𝑦))
132, 12syl9r 78 . . 3 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 → (𝑥𝐴 → ∃𝑦𝐵 𝑥𝑦)))
1413ralrimdv 2968 . 2 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 → ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
15 uniss 4458 . . . . . 6 (𝐵𝐴 𝐵 𝐴)
16153ad2ant2 1083 . . . . 5 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐵 𝐴)
17 uniss2 4470 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
18173ad2ant3 1084 . . . . 5 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 𝐵)
1916, 18eqssd 3620 . . . 4 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐵 = 𝐴)
20 limuni 5785 . . . . 5 (Lim 𝐴𝐴 = 𝐴)
21203ad2ant1 1082 . . . 4 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 = 𝐴)
2219, 21eqtr4d 2659 . . 3 ((Lim 𝐴𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐵 = 𝐴)
23223expia 1267 . 2 ((Lim 𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐵 = 𝐴))
2414, 23impbid 202 1 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   cuni 4436  Ord word 5722  Oncon0 5723  Lim wlim 5724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728
This theorem is referenced by:  cflim3  9084  pwcfsdom  9405
  Copyright terms: Public domain W3C validator