| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coflim | Structured version Visualization version Unicode version | ||
| Description: A simpler expression for the cofinality predicate, at a limit ordinal. (Contributed by Mario Carneiro, 28-Feb-2013.) |
| Ref | Expression |
|---|---|
| coflim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2690 |
. . . . 5
| |
| 2 | 1 | biimprd 238 |
. . . 4
|
| 3 | eluni2 4440 |
. . . . 5
| |
| 4 | limord 5784 |
. . . . . . . . 9
| |
| 5 | ssel2 3598 |
. . . . . . . . 9
| |
| 6 | ordelon 5747 |
. . . . . . . . 9
| |
| 7 | 4, 5, 6 | syl2an 494 |
. . . . . . . 8
|
| 8 | 7 | expr 643 |
. . . . . . 7
|
| 9 | onelss 5766 |
. . . . . . 7
| |
| 10 | 8, 9 | syl6 35 |
. . . . . 6
|
| 11 | 10 | reximdvai 3015 |
. . . . 5
|
| 12 | 3, 11 | syl5bi 232 |
. . . 4
|
| 13 | 2, 12 | syl9r 78 |
. . 3
|
| 14 | 13 | ralrimdv 2968 |
. 2
|
| 15 | uniss 4458 |
. . . . . 6
| |
| 16 | 15 | 3ad2ant2 1083 |
. . . . 5
|
| 17 | uniss2 4470 |
. . . . . 6
| |
| 18 | 17 | 3ad2ant3 1084 |
. . . . 5
|
| 19 | 16, 18 | eqssd 3620 |
. . . 4
|
| 20 | limuni 5785 |
. . . . 5
| |
| 21 | 20 | 3ad2ant1 1082 |
. . . 4
|
| 22 | 19, 21 | eqtr4d 2659 |
. . 3
|
| 23 | 22 | 3expia 1267 |
. 2
|
| 24 | 14, 23 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 |
| This theorem is referenced by: cflim3 9084 pwcfsdom 9405 |
| Copyright terms: Public domain | W3C validator |