| Step | Hyp | Ref
| Expression |
| 1 | | onzsl 7046 |
. . . 4
⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| 2 | 1 | biimpi 206 |
. . 3
⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| 3 | | cfom 9086 |
. . . . . . 7
⊢
(cf‘ω) = ω |
| 4 | | aleph0 8889 |
. . . . . . . 8
⊢
(ℵ‘∅) = ω |
| 5 | 4 | fveq2i 6194 |
. . . . . . 7
⊢
(cf‘(ℵ‘∅)) = (cf‘ω) |
| 6 | 3, 5, 4 | 3eqtr4i 2654 |
. . . . . 6
⊢
(cf‘(ℵ‘∅)) =
(ℵ‘∅) |
| 7 | | fveq2 6191 |
. . . . . . 7
⊢ (𝐴 = ∅ →
(ℵ‘𝐴) =
(ℵ‘∅)) |
| 8 | 7 | fveq2d 6195 |
. . . . . 6
⊢ (𝐴 = ∅ →
(cf‘(ℵ‘𝐴)) =
(cf‘(ℵ‘∅))) |
| 9 | 6, 8, 7 | 3eqtr4a 2682 |
. . . . 5
⊢ (𝐴 = ∅ →
(cf‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
| 10 | | fvex 6201 |
. . . . . . . . 9
⊢
(ℵ‘𝐴)
∈ V |
| 11 | 10 | canth2 8113 |
. . . . . . . 8
⊢
(ℵ‘𝐴)
≺ 𝒫 (ℵ‘𝐴) |
| 12 | 10 | pw2en 8067 |
. . . . . . . 8
⊢ 𝒫
(ℵ‘𝐴) ≈
(2𝑜 ↑𝑚 (ℵ‘𝐴)) |
| 13 | | sdomentr 8094 |
. . . . . . . 8
⊢
(((ℵ‘𝐴)
≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2𝑜
↑𝑚 (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2𝑜
↑𝑚 (ℵ‘𝐴))) |
| 14 | 11, 12, 13 | mp2an 708 |
. . . . . . 7
⊢
(ℵ‘𝐴)
≺ (2𝑜 ↑𝑚 (ℵ‘𝐴)) |
| 15 | | alephon 8892 |
. . . . . . . . 9
⊢
(ℵ‘𝐴)
∈ On |
| 16 | | alephgeom 8905 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On ↔ ω
⊆ (ℵ‘𝐴)) |
| 17 | | omelon 8543 |
. . . . . . . . . . . 12
⊢ ω
∈ On |
| 18 | | 2onn 7720 |
. . . . . . . . . . . 12
⊢
2𝑜 ∈ ω |
| 19 | | onelss 5766 |
. . . . . . . . . . . 12
⊢ (ω
∈ On → (2𝑜 ∈ ω →
2𝑜 ⊆ ω)) |
| 20 | 17, 18, 19 | mp2 9 |
. . . . . . . . . . 11
⊢
2𝑜 ⊆ ω |
| 21 | | sstr 3611 |
. . . . . . . . . . 11
⊢
((2𝑜 ⊆ ω ∧ ω ⊆
(ℵ‘𝐴)) →
2𝑜 ⊆ (ℵ‘𝐴)) |
| 22 | 20, 21 | mpan 706 |
. . . . . . . . . 10
⊢ (ω
⊆ (ℵ‘𝐴)
→ 2𝑜 ⊆ (ℵ‘𝐴)) |
| 23 | 16, 22 | sylbi 207 |
. . . . . . . . 9
⊢ (𝐴 ∈ On →
2𝑜 ⊆ (ℵ‘𝐴)) |
| 24 | | ssdomg 8001 |
. . . . . . . . 9
⊢
((ℵ‘𝐴)
∈ On → (2𝑜 ⊆ (ℵ‘𝐴) → 2𝑜
≼ (ℵ‘𝐴))) |
| 25 | 15, 23, 24 | mpsyl 68 |
. . . . . . . 8
⊢ (𝐴 ∈ On →
2𝑜 ≼ (ℵ‘𝐴)) |
| 26 | | mapdom1 8125 |
. . . . . . . 8
⊢
(2𝑜 ≼ (ℵ‘𝐴) → (2𝑜
↑𝑚 (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑𝑚
(ℵ‘𝐴))) |
| 27 | 25, 26 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ On →
(2𝑜 ↑𝑚 (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑𝑚
(ℵ‘𝐴))) |
| 28 | | sdomdomtr 8093 |
. . . . . . 7
⊢
(((ℵ‘𝐴)
≺ (2𝑜 ↑𝑚 (ℵ‘𝐴)) ∧ (2𝑜
↑𝑚 (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑𝑚
(ℵ‘𝐴))) →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑𝑚 (ℵ‘𝐴))) |
| 29 | 14, 27, 28 | sylancr 695 |
. . . . . 6
⊢ (𝐴 ∈ On →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑𝑚 (ℵ‘𝐴))) |
| 30 | | oveq2 6658 |
. . . . . . 7
⊢
((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))) = ((ℵ‘𝐴) ↑𝑚
(ℵ‘𝐴))) |
| 31 | 30 | breq2d 4665 |
. . . . . 6
⊢
((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))) ↔ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(ℵ‘𝐴)))) |
| 32 | 29, 31 | syl5ibrcom 237 |
. . . . 5
⊢ (𝐴 ∈ On →
((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))))) |
| 33 | 9, 32 | syl5 34 |
. . . 4
⊢ (𝐴 ∈ On → (𝐴 = ∅ →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑𝑚 (cf‘(ℵ‘𝐴))))) |
| 34 | | alephreg 9404 |
. . . . . . 7
⊢
(cf‘(ℵ‘suc 𝑥)) = (ℵ‘suc 𝑥) |
| 35 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝐴 = suc 𝑥 → (ℵ‘𝐴) = (ℵ‘suc 𝑥)) |
| 36 | 35 | fveq2d 6195 |
. . . . . . 7
⊢ (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) =
(cf‘(ℵ‘suc 𝑥))) |
| 37 | 34, 36, 35 | 3eqtr4a 2682 |
. . . . . 6
⊢ (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
| 38 | 37 | rexlimivw 3029 |
. . . . 5
⊢
(∃𝑥 ∈ On
𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
| 39 | 38, 32 | syl5 34 |
. . . 4
⊢ (𝐴 ∈ On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))))) |
| 40 | | cfsmo 9093 |
. . . . . 6
⊢
((ℵ‘𝐴)
∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) |
| 41 | | limelon 5788 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On) |
| 42 | | ffn 6045 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑓 Fn (cf‘(ℵ‘𝐴))) |
| 43 | | fnrnfv 6242 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 Fn
(cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)}) |
| 44 | 43 | unieqd 4446 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn
(cf‘(ℵ‘𝐴)) → ∪ ran
𝑓 = ∪ {𝑦
∣ ∃𝑥 ∈
(cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)}) |
| 45 | 42, 44 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∪ ran 𝑓 = ∪ {𝑦 ∣ ∃𝑥 ∈
(cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)}) |
| 46 | | fvex 6201 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓‘𝑥) ∈ V |
| 47 | 46 | dfiun2 4554 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈
(cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)} |
| 48 | 45, 47 | syl6eqr 2674 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∪ ran 𝑓 = ∪ 𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥)) |
| 49 | 48 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ ran
𝑓 = ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥)) |
| 50 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 Fn
(cf‘(ℵ‘𝐴)) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑤) ∈ ran 𝑓) |
| 51 | 42, 50 | sylan 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑤) ∈ ran 𝑓) |
| 52 | | sseq2 3627 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑓‘𝑤) → (𝑧 ⊆ 𝑦 ↔ 𝑧 ⊆ (𝑓‘𝑤))) |
| 53 | 52 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓‘𝑤) ∈ ran 𝑓 ∧ 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
| 54 | 51, 53 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) ∧ 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
| 55 | 54 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑧 ⊆ (𝑓‘𝑤) → ∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
| 56 | 55 | rexlimdva 3031 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∃𝑤 ∈
(cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤) → ∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
| 57 | 56 | ralimdv 2963 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
| 58 | 57 | imp 445 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
| 59 | 58 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
| 60 | | alephislim 8906 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On ↔ Lim
(ℵ‘𝐴)) |
| 61 | 60 | biimpi 206 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ On → Lim
(ℵ‘𝐴)) |
| 62 | | frn 6053 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 ⊆ (ℵ‘𝐴)) |
| 63 | 62 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ran 𝑓 ⊆ (ℵ‘𝐴)) |
| 64 | | coflim 9083 |
. . . . . . . . . . . . . . 15
⊢ ((Lim
(ℵ‘𝐴) ∧ ran
𝑓 ⊆
(ℵ‘𝐴)) →
(∪ ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
| 65 | 61, 63, 64 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (∪ ran
𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
| 66 | 59, 65 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ ran
𝑓 = (ℵ‘𝐴)) |
| 67 | 49, 66 | eqtr3d 2658 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) = (ℵ‘𝐴)) |
| 68 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑥) ∈ (ℵ‘𝐴)) |
| 69 | 15 | oneli 5835 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑥) ∈ (ℵ‘𝐴) → (𝑓‘𝑥) ∈ On) |
| 70 | | harcard 8804 |
. . . . . . . . . . . . . . . . . . 19
⊢
(card‘(har‘(𝑓‘𝑥))) = (har‘(𝑓‘𝑥)) |
| 71 | | iscard 8801 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((card‘(har‘(𝑓‘𝑥))) = (har‘(𝑓‘𝑥)) ↔ ((har‘(𝑓‘𝑥)) ∈ On ∧ ∀𝑦 ∈ (har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥)))) |
| 72 | 71 | simprbi 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
((card‘(har‘(𝑓‘𝑥))) = (har‘(𝑓‘𝑥)) → ∀𝑦 ∈ (har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥))) |
| 73 | 70, 72 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
∀𝑦 ∈
(har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥)) |
| 74 | | domrefg 7990 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑥) ∈ V → (𝑓‘𝑥) ≼ (𝑓‘𝑥)) |
| 75 | 46, 74 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓‘𝑥) ≼ (𝑓‘𝑥) |
| 76 | | elharval 8468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥)) ↔ ((𝑓‘𝑥) ∈ On ∧ (𝑓‘𝑥) ≼ (𝑓‘𝑥))) |
| 77 | 76 | biimpri 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓‘𝑥) ∈ On ∧ (𝑓‘𝑥) ≼ (𝑓‘𝑥)) → (𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥))) |
| 78 | 75, 77 | mpan2 707 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑥) ∈ On → (𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥))) |
| 79 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑓‘𝑥) → (𝑦 ≺ (har‘(𝑓‘𝑥)) ↔ (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
| 80 | 79 | rspccv 3306 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
(har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥)) → ((𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥)) → (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
| 81 | 73, 78, 80 | mpsyl 68 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑥) ∈ On → (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥))) |
| 82 | 68, 69, 81 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥))) |
| 83 | | harcl 8466 |
. . . . . . . . . . . . . . . . . . 19
⊢
(har‘(𝑓‘𝑥)) ∈ On |
| 84 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → (𝑓‘𝑦) = (𝑓‘𝑥)) |
| 85 | 84 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (har‘(𝑓‘𝑦)) = (har‘(𝑓‘𝑥))) |
| 86 | | pwcfsdom.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑦))) |
| 87 | 85, 86 | fvmptg 6280 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈
(cf‘(ℵ‘𝐴)) ∧ (har‘(𝑓‘𝑥)) ∈ On) → (𝐻‘𝑥) = (har‘(𝑓‘𝑥))) |
| 88 | 83, 87 | mpan2 707 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈
(cf‘(ℵ‘𝐴)) → (𝐻‘𝑥) = (har‘(𝑓‘𝑥))) |
| 89 | 88 | breq2d 4665 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈
(cf‘(ℵ‘𝐴)) → ((𝑓‘𝑥) ≺ (𝐻‘𝑥) ↔ (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
| 90 | 89 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → ((𝑓‘𝑥) ≺ (𝐻‘𝑥) ↔ (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
| 91 | 82, 90 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑥) ≺ (𝐻‘𝑥)) |
| 92 | 91 | ralrimiva 2966 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ (𝐻‘𝑥)) |
| 93 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(cf‘(ℵ‘𝐴)) ∈ V |
| 94 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) = ∪ 𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) |
| 95 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) = X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) |
| 96 | 93, 94, 95 | konigth 9391 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ (𝐻‘𝑥) → ∪
𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
| 97 | 92, 96 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
| 98 | 97 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
| 99 | 67, 98 | eqbrtrrd 4677 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
| 100 | 41, 99 | sylan 488 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
| 101 | | ovex 6678 |
. . . . . . . . . . . 12
⊢
((ℵ‘𝐴)
↑𝑚 (cf‘(ℵ‘𝐴))) ∈ V |
| 102 | 68 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝑓‘𝑥) ∈ (ℵ‘𝐴))) |
| 103 | | alephlim 8890 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑦 ∈ 𝐴 (ℵ‘𝑦)) |
| 104 | 103 | eleq2d 2687 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓‘𝑥) ∈ (ℵ‘𝐴) ↔ (𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦))) |
| 105 | | eliun 4524 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑓‘𝑥) ∈ (ℵ‘𝑦)) |
| 106 | | alephcard 8893 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(card‘(ℵ‘𝑦)) = (ℵ‘𝑦) |
| 107 | 106 | eleq2i 2693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑥) ∈ (card‘(ℵ‘𝑦)) ↔ (𝑓‘𝑥) ∈ (ℵ‘𝑦)) |
| 108 | | cardsdomelir 8799 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑥) ∈ (card‘(ℵ‘𝑦)) → (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
| 109 | 107, 108 | sylbir 225 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑥) ∈ (ℵ‘𝑦) → (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
| 110 | | elharval 8468 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((ℵ‘𝑦)
∈ (har‘(𝑓‘𝑥)) ↔ ((ℵ‘𝑦) ∈ On ∧ (ℵ‘𝑦) ≼ (𝑓‘𝑥))) |
| 111 | 110 | simprbi 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((ℵ‘𝑦)
∈ (har‘(𝑓‘𝑥)) → (ℵ‘𝑦) ≼ (𝑓‘𝑥)) |
| 112 | | domnsym 8086 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((ℵ‘𝑦)
≼ (𝑓‘𝑥) → ¬ (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
| 113 | 111, 112 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((ℵ‘𝑦)
∈ (har‘(𝑓‘𝑥)) → ¬ (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
| 114 | 113 | con2i 134 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑥) ≺ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ∈ (har‘(𝑓‘𝑥))) |
| 115 | | alephon 8892 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(ℵ‘𝑦)
∈ On |
| 116 | | ontri1 5757 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((har‘(𝑓‘𝑥)) ∈ On ∧ (ℵ‘𝑦) ∈ On) →
((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬
(ℵ‘𝑦) ∈
(har‘(𝑓‘𝑥)))) |
| 117 | 83, 115, 116 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓‘𝑥))) |
| 118 | 114, 117 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑥) ≺ (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦)) |
| 119 | 109, 118 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦)) |
| 120 | | alephord2i 8900 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ On → (𝑦 ∈ 𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴))) |
| 121 | 120 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴)) |
| 122 | | ontr2 5772 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((har‘(𝑓‘𝑥)) ∈ On ∧ (ℵ‘𝐴) ∈ On) →
(((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 123 | 83, 15, 122 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴)) |
| 124 | 119, 121,
123 | syl2anr 495 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ (𝑓‘𝑥) ∈ (ℵ‘𝑦)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴)) |
| 125 | 124 | exp31 630 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ On → (𝑦 ∈ 𝐴 → ((𝑓‘𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴)))) |
| 126 | 125 | rexlimdv 3030 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ On → (∃𝑦 ∈ 𝐴 (𝑓‘𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 127 | 105, 126 | syl5bi 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ On → ((𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 128 | 41, 127 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 129 | 104, 128 | sylbid 230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓‘𝑥) ∈ (ℵ‘𝐴) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 130 | 102, 129 | sylan9r 690 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 131 | 130 | imp 445 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴)) |
| 132 | 85 | cbvmptv 4750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈
(cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑦))) = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑥))) |
| 133 | 86, 132 | eqtri 2644 |
. . . . . . . . . . . . . 14
⊢ 𝐻 = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑥))) |
| 134 | 131, 133 | fmptd 6385 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → 𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) |
| 135 | | ffvelrn 6357 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻‘𝑥) ∈ (ℵ‘𝐴)) |
| 136 | | onelss 5766 |
. . . . . . . . . . . . . . 15
⊢
((ℵ‘𝐴)
∈ On → ((𝐻‘𝑥) ∈ (ℵ‘𝐴) → (𝐻‘𝑥) ⊆ (ℵ‘𝐴))) |
| 137 | 15, 135, 136 | mpsyl 68 |
. . . . . . . . . . . . . 14
⊢ ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻‘𝑥) ⊆ (ℵ‘𝐴)) |
| 138 | 137 | ralrimiva 2966 |
. . . . . . . . . . . . 13
⊢ (𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ (ℵ‘𝐴)) |
| 139 | | ss2ixp 7921 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ X𝑥 ∈
(cf‘(ℵ‘𝐴))(ℵ‘𝐴)) |
| 140 | 93, 10 | ixpconst 7918 |
. . . . . . . . . . . . . 14
⊢ X𝑥 ∈
(cf‘(ℵ‘𝐴))(ℵ‘𝐴) = ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))) |
| 141 | 139, 140 | syl6sseq 3651 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴)))) |
| 142 | 134, 138,
141 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴)))) |
| 143 | | ssdomg 8001 |
. . . . . . . . . . . 12
⊢
(((ℵ‘𝐴)
↑𝑚 (cf‘(ℵ‘𝐴))) ∈ V → (X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))))) |
| 144 | 101, 142,
143 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴)))) |
| 145 | 144 | adantrr 753 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴)))) |
| 146 | | sdomdomtr 8093 |
. . . . . . . . . 10
⊢
(((ℵ‘𝐴)
≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻‘𝑥) ∧ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴)))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴)))) |
| 147 | 100, 145,
146 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴)))) |
| 148 | 147 | expcom 451 |
. . . . . . . 8
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))))) |
| 149 | 148 | 3adant2 1080 |
. . . . . . 7
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))))) |
| 150 | 149 | exlimiv 1858 |
. . . . . 6
⊢
(∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))))) |
| 151 | 15, 40, 150 | mp2b 10 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴)))) |
| 152 | 151 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ On → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))))) |
| 153 | 33, 39, 152 | 3jaod 1392 |
. . 3
⊢ (𝐴 ∈ On → ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))))) |
| 154 | 2, 153 | mpd 15 |
. 2
⊢ (𝐴 ∈ On →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑𝑚 (cf‘(ℵ‘𝐴)))) |
| 155 | | alephfnon 8888 |
. . . . 5
⊢ ℵ
Fn On |
| 156 | | fndm 5990 |
. . . . 5
⊢ (ℵ
Fn On → dom ℵ = On) |
| 157 | 155, 156 | ax-mp 5 |
. . . 4
⊢ dom
ℵ = On |
| 158 | 157 | eleq2i 2693 |
. . 3
⊢ (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On) |
| 159 | | ndmfv 6218 |
. . . 4
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) =
∅) |
| 160 | | 1n0 7575 |
. . . . . 6
⊢
1𝑜 ≠ ∅ |
| 161 | | 1on 7567 |
. . . . . . . 8
⊢
1𝑜 ∈ On |
| 162 | 161 | elexi 3213 |
. . . . . . 7
⊢
1𝑜 ∈ V |
| 163 | 162 | 0sdom 8091 |
. . . . . 6
⊢ (∅
≺ 1𝑜 ↔ 1𝑜 ≠
∅) |
| 164 | 160, 163 | mpbir 221 |
. . . . 5
⊢ ∅
≺ 1𝑜 |
| 165 | | id 22 |
. . . . . 6
⊢
((ℵ‘𝐴) =
∅ → (ℵ‘𝐴) = ∅) |
| 166 | | fveq2 6191 |
. . . . . . . . 9
⊢
((ℵ‘𝐴) =
∅ → (cf‘(ℵ‘𝐴)) = (cf‘∅)) |
| 167 | | cf0 9073 |
. . . . . . . . 9
⊢
(cf‘∅) = ∅ |
| 168 | 166, 167 | syl6eq 2672 |
. . . . . . . 8
⊢
((ℵ‘𝐴) =
∅ → (cf‘(ℵ‘𝐴)) = ∅) |
| 169 | 165, 168 | oveq12d 6668 |
. . . . . . 7
⊢
((ℵ‘𝐴) =
∅ → ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))) = (∅ ↑𝑚
∅)) |
| 170 | | 0ex 4790 |
. . . . . . . 8
⊢ ∅
∈ V |
| 171 | | map0e 7895 |
. . . . . . . 8
⊢ (∅
∈ V → (∅ ↑𝑚 ∅) =
1𝑜) |
| 172 | 170, 171 | ax-mp 5 |
. . . . . . 7
⊢ (∅
↑𝑚 ∅) = 1𝑜 |
| 173 | 169, 172 | syl6eq 2672 |
. . . . . 6
⊢
((ℵ‘𝐴) =
∅ → ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))) =
1𝑜) |
| 174 | 165, 173 | breq12d 4666 |
. . . . 5
⊢
((ℵ‘𝐴) =
∅ → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴))) ↔ ∅ ≺
1𝑜)) |
| 175 | 164, 174 | mpbiri 248 |
. . . 4
⊢
((ℵ‘𝐴) =
∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚
(cf‘(ℵ‘𝐴)))) |
| 176 | 159, 175 | syl 17 |
. . 3
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑𝑚 (cf‘(ℵ‘𝐴)))) |
| 177 | 158, 176 | sylnbir 321 |
. 2
⊢ (¬
𝐴 ∈ On →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑𝑚 (cf‘(ℵ‘𝐴)))) |
| 178 | 154, 177 | pm2.61i 176 |
1
⊢
(ℵ‘𝐴)
≺ ((ℵ‘𝐴)
↑𝑚 (cf‘(ℵ‘𝐴))) |