![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotrg | Structured version Visualization version GIF version |
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 5508 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 5508. (Revised by Richard Penner, 24-Dec-2019.) |
Ref | Expression |
---|---|
cotrg | ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 5123 | . . . 4 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)} | |
2 | 1 | relopabi 5245 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) |
3 | ssrel 5207 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶)) |
5 | vex 3203 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
6 | vex 3203 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
7 | 5, 6 | opelco 5293 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
8 | df-br 4654 | . . . . . . . 8 ⊢ (𝑥𝐶𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝐶) | |
9 | 8 | bicomi 214 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ 𝐶 ↔ 𝑥𝐶𝑧) |
10 | 7, 9 | imbi12i 340 | . . . . . 6 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
11 | 19.23v 1902 | . . . . . 6 ⊢ (∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
12 | 10, 11 | bitr4i 267 | . . . . 5 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶) ↔ ∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
13 | 12 | albii 1747 | . . . 4 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶) ↔ ∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
14 | alcom 2037 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
15 | 13, 14 | bitri 264 | . . 3 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
16 | 15 | albii 1747 | . 2 ⊢ (∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
17 | 4, 16 | bitri 264 | 1 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∃wex 1704 ∈ wcel 1990 ⊆ wss 3574 〈cop 4183 class class class wbr 4653 ∘ ccom 5118 Rel wrel 5119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-co 5123 |
This theorem is referenced by: cotr 5508 cotr2g 13715 |
Copyright terms: Public domain | W3C validator |