MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotrg Structured version   Visualization version   Unicode version

Theorem cotrg 5507
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 5508 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 5508. (Revised by Richard Penner, 24-Dec-2019.)
Assertion
Ref Expression
cotrg  |-  ( ( A  o.  B ) 
C_  C  <->  A. x A. y A. z ( ( x B y  /\  y A z )  ->  x C
z ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z

Proof of Theorem cotrg
StepHypRef Expression
1 df-co 5123 . . . 4  |-  ( A  o.  B )  =  { <. x ,  z
>.  |  E. y
( x B y  /\  y A z ) }
21relopabi 5245 . . 3  |-  Rel  ( A  o.  B )
3 ssrel 5207 . . 3  |-  ( Rel  ( A  o.  B
)  ->  ( ( A  o.  B )  C_  C  <->  A. x A. z
( <. x ,  z
>.  e.  ( A  o.  B )  ->  <. x ,  z >.  e.  C
) ) )
42, 3ax-mp 5 . 2  |-  ( ( A  o.  B ) 
C_  C  <->  A. x A. z ( <. x ,  z >.  e.  ( A  o.  B )  ->  <. x ,  z
>.  e.  C ) )
5 vex 3203 . . . . . . . 8  |-  x  e. 
_V
6 vex 3203 . . . . . . . 8  |-  z  e. 
_V
75, 6opelco 5293 . . . . . . 7  |-  ( <.
x ,  z >.  e.  ( A  o.  B
)  <->  E. y ( x B y  /\  y A z ) )
8 df-br 4654 . . . . . . . 8  |-  ( x C z  <->  <. x ,  z >.  e.  C
)
98bicomi 214 . . . . . . 7  |-  ( <.
x ,  z >.  e.  C  <->  x C z )
107, 9imbi12i 340 . . . . . 6  |-  ( (
<. x ,  z >.  e.  ( A  o.  B
)  ->  <. x ,  z >.  e.  C
)  <->  ( E. y
( x B y  /\  y A z )  ->  x C
z ) )
11 19.23v 1902 . . . . . 6  |-  ( A. y ( ( x B y  /\  y A z )  ->  x C z )  <->  ( E. y ( x B y  /\  y A z )  ->  x C z ) )
1210, 11bitr4i 267 . . . . 5  |-  ( (
<. x ,  z >.  e.  ( A  o.  B
)  ->  <. x ,  z >.  e.  C
)  <->  A. y ( ( x B y  /\  y A z )  ->  x C z ) )
1312albii 1747 . . . 4  |-  ( A. z ( <. x ,  z >.  e.  ( A  o.  B )  ->  <. x ,  z
>.  e.  C )  <->  A. z A. y ( ( x B y  /\  y A z )  ->  x C z ) )
14 alcom 2037 . . . 4  |-  ( A. z A. y ( ( x B y  /\  y A z )  ->  x C z )  <->  A. y A. z ( ( x B y  /\  y A z )  ->  x C z ) )
1513, 14bitri 264 . . 3  |-  ( A. z ( <. x ,  z >.  e.  ( A  o.  B )  ->  <. x ,  z
>.  e.  C )  <->  A. y A. z ( ( x B y  /\  y A z )  ->  x C z ) )
1615albii 1747 . 2  |-  ( A. x A. z ( <.
x ,  z >.  e.  ( A  o.  B
)  ->  <. x ,  z >.  e.  C
)  <->  A. x A. y A. z ( ( x B y  /\  y A z )  ->  x C z ) )
174, 16bitri 264 1  |-  ( ( A  o.  B ) 
C_  C  <->  A. x A. y A. z ( ( x B y  /\  y A z )  ->  x C
z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704    e. wcel 1990    C_ wss 3574   <.cop 4183   class class class wbr 4653    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-co 5123
This theorem is referenced by:  cotr  5508  cotr2g  13715
  Copyright terms: Public domain W3C validator