Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbaovg Structured version   Visualization version   GIF version

Theorem csbaovg 41260
Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
csbaovg (𝐴𝐷𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )

Proof of Theorem csbaovg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3536 . . 3 (𝑦 = 𝐴𝑦 / 𝑥 ((𝐵𝐹𝐶)) = 𝐴 / 𝑥 ((𝐵𝐹𝐶)) )
2 csbeq1 3536 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3536 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
4 csbeq1 3536 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4aoveq123d 41258 . . 3 (𝑦 = 𝐴 → ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )
61, 5eqeq12d 2637 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥 ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) ↔ 𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) ))
7 vex 3203 . . 3 𝑦 ∈ V
8 nfcsb1v 3549 . . . 4 𝑥𝑦 / 𝑥𝐵
9 nfcsb1v 3549 . . . 4 𝑥𝑦 / 𝑥𝐹
10 nfcsb1v 3549 . . . 4 𝑥𝑦 / 𝑥𝐶
118, 9, 10nfaov 41259 . . 3 𝑥 ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
12 csbeq1a 3542 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
13 csbeq1a 3542 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
14 csbeq1a 3542 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1512, 13, 14aoveq123d 41258 . . 3 (𝑥 = 𝑦 → ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)) )
167, 11, 15csbief 3558 . 2 𝑦 / 𝑥 ((𝐵𝐹𝐶)) = ((𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
176, 16vtoclg 3266 1 (𝐴𝐷𝐴 / 𝑥 ((𝐵𝐹𝐶)) = ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)) )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  csb 3533   ((caov 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-dfat 41196  df-afv 41197  df-aov 41198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator