| Step | Hyp | Ref
| Expression |
| 1 | | idn1 38790 |
. . . . . . . . . . . 12
⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 ) |
| 2 | | sbcel12gOLD 38754 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
| 3 | 1, 2 | e1a 38852 |
. . . . . . . . . . 11
⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 4 | | csbconstg 3546 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 = 〈𝑤, 𝑦〉) |
| 5 | 1, 4 | e1a 38852 |
. . . . . . . . . . . 12
⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 = 〈𝑤, 𝑦〉 ) |
| 6 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢
(⦋𝐴 /
𝑥⦌〈𝑤, 𝑦〉 = 〈𝑤, 𝑦〉 → (⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
| 7 | 5, 6 | e1a 38852 |
. . . . . . . . . . 11
⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 8 | | bibi1 341 |
. . . . . . . . . . . 12
⊢
(([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) → (([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) ↔ (⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵))) |
| 9 | 8 | biimprd 238 |
. . . . . . . . . . 11
⊢
(([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) → ((⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) → ([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵))) |
| 10 | 3, 7, 9 | e11 38913 |
. . . . . . . . . 10
⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 11 | 10 | gen11 38841 |
. . . . . . . . 9
⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑤([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 12 | | exbi 1773 |
. . . . . . . . 9
⊢
(∀𝑤([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) → (∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
| 13 | 11, 12 | e1a 38852 |
. . . . . . . 8
⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 14 | | sbcexgOLD 38753 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵)) |
| 15 | 14 | bicomd 213 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵)) |
| 16 | 1, 15 | e1a 38852 |
. . . . . . . 8
⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵) ) |
| 17 | | bitr3 342 |
. . . . . . . . 9
⊢
((∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵) → ((∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) → ([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵))) |
| 18 | 17 | com12 32 |
. . . . . . . 8
⊢
((∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) → ((∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵) → ([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵))) |
| 19 | 13, 16, 18 | e11 38913 |
. . . . . . 7
⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 20 | 19 | gen11 38841 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 21 | | abbi 2737 |
. . . . . . 7
⊢
(∀𝑦([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) ↔ {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
| 22 | 21 | biimpi 206 |
. . . . . 6
⊢
(∀𝑦([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) → {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
| 23 | 20, 22 | e1a 38852 |
. . . . 5
⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} ) |
| 24 | | csbabgOLD 39050 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵}) |
| 25 | 1, 24 | e1a 38852 |
. . . . 5
⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} ) |
| 26 | | eqeq2 2633 |
. . . . . 6
⊢ ({𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} → (⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} ↔ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵})) |
| 27 | 26 | biimpd 219 |
. . . . 5
⊢ ({𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} → (⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵})) |
| 28 | 23, 25, 27 | e11 38913 |
. . . 4
⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} ) |
| 29 | | dfrn3 5312 |
. . . . . 6
⊢ ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} |
| 30 | 29 | ax-gen 1722 |
. . . . 5
⊢
∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} |
| 31 | | csbeq2gOLD 38765 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} → ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵})) |
| 32 | 1, 30, 31 | e10 38919 |
. . . 4
⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} ) |
| 33 | | eqeq2 2633 |
. . . . 5
⊢
(⦋𝐴 /
𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} → (⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} ↔ ⦋𝐴 / 𝑥⦌ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵})) |
| 34 | 33 | biimpd 219 |
. . . 4
⊢
(⦋𝐴 /
𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} → (⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} → ⦋𝐴 / 𝑥⦌ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵})) |
| 35 | 28, 32, 34 | e11 38913 |
. . 3
⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} ) |
| 36 | | dfrn3 5312 |
. . 3
⊢ ran
⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} |
| 37 | | eqeq2 2633 |
. . . 4
⊢ (ran
⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} → (⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵 ↔ ⦋𝐴 / 𝑥⦌ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵})) |
| 38 | 37 | biimprcd 240 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} → (ran ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵)) |
| 39 | 35, 36, 38 | e10 38919 |
. 2
⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵 ) |
| 40 | 39 | in1 38787 |
1
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵) |