MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbima12 Structured version   Visualization version   GIF version

Theorem csbima12 5483
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.)
Assertion
Ref Expression
csbima12 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)

Proof of Theorem csbima12
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3536 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥(𝐹𝐵))
2 csbeq1 3536 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3536 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3imaeq12d 5467 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
51, 4eqeq12d 2637 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
6 vex 3203 . . . 4 𝑦 ∈ V
7 nfcsb1v 3549 . . . . 5 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3549 . . . . 5 𝑥𝑦 / 𝑥𝐵
97, 8nfima 5474 . . . 4 𝑥(𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
10 csbeq1a 3542 . . . . 5 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3542 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11imaeq12d 5467 . . . 4 (𝑥 = 𝑦 → (𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵))
136, 9, 12csbief 3558 . . 3 𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
145, 13vtoclg 3266 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
15 csbprc 3980 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = ∅)
16 csbprc 3980 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
1716imaeq2d 5466 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (𝐴 / 𝑥𝐹 “ ∅))
18 ima0 5481 . . . 4 (𝐴 / 𝑥𝐹 “ ∅) = ∅
1917, 18syl6req 2673 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
2015, 19eqtrd 2656 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
2114, 20pm2.61i 176 1 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533  c0 3915  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  csbrn  5596  disjpreima  29397  csbpredg  33172  brtrclfv2  38019  sbcheg  38073  csbfv12gALTOLD  39052  csbfv12gALTVD  39135
  Copyright terms: Public domain W3C validator