| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbima12 | Structured version Visualization version Unicode version | ||
| Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbima12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3536 |
. . . 4
| |
| 2 | csbeq1 3536 |
. . . . 5
| |
| 3 | csbeq1 3536 |
. . . . 5
| |
| 4 | 2, 3 | imaeq12d 5467 |
. . . 4
|
| 5 | 1, 4 | eqeq12d 2637 |
. . 3
|
| 6 | vex 3203 |
. . . 4
| |
| 7 | nfcsb1v 3549 |
. . . . 5
| |
| 8 | nfcsb1v 3549 |
. . . . 5
| |
| 9 | 7, 8 | nfima 5474 |
. . . 4
|
| 10 | csbeq1a 3542 |
. . . . 5
| |
| 11 | csbeq1a 3542 |
. . . . 5
| |
| 12 | 10, 11 | imaeq12d 5467 |
. . . 4
|
| 13 | 6, 9, 12 | csbief 3558 |
. . 3
|
| 14 | 5, 13 | vtoclg 3266 |
. 2
|
| 15 | csbprc 3980 |
. . 3
| |
| 16 | csbprc 3980 |
. . . . 5
| |
| 17 | 16 | imaeq2d 5466 |
. . . 4
|
| 18 | ima0 5481 |
. . . 4
| |
| 19 | 17, 18 | syl6req 2673 |
. . 3
|
| 20 | 15, 19 | eqtrd 2656 |
. 2
|
| 21 | 14, 20 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
| This theorem is referenced by: csbrn 5596 disjpreima 29397 csbpredg 33172 brtrclfv2 38019 sbcheg 38073 csbfv12gALTOLD 39052 csbfv12gALTVD 39135 |
| Copyright terms: Public domain | W3C validator |