Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjpreima Structured version   Visualization version   GIF version

Theorem disjpreima 29397
Description: A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
disjpreima ((Fun 𝐹Disj 𝑥𝐴 𝐵) → Disj 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjpreima
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inpreima 6342 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)))
2 imaeq2 5462 . . . . . . . . . 10 ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = (𝐹 “ ∅))
3 ima0 5481 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
42, 3syl6eq 2672 . . . . . . . . 9 ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = ∅)
51, 4sylan9req 2677 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅)
65ex 450 . . . . . . 7 (Fun 𝐹 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅))
7 csbima12 5483 . . . . . . . . . 10 𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
8 vex 3203 . . . . . . . . . . . 12 𝑦 ∈ V
9 csbconstg 3546 . . . . . . . . . . . 12 (𝑦 ∈ V → 𝑦 / 𝑥𝐹 = 𝐹)
108, 9ax-mp 5 . . . . . . . . . . 11 𝑦 / 𝑥𝐹 = 𝐹
1110imaeq1i 5463 . . . . . . . . . 10 (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) = (𝐹𝑦 / 𝑥𝐵)
127, 11eqtri 2644 . . . . . . . . 9 𝑦 / 𝑥(𝐹𝐵) = (𝐹𝑦 / 𝑥𝐵)
13 csbima12 5483 . . . . . . . . . 10 𝑧 / 𝑥(𝐹𝐵) = (𝑧 / 𝑥𝐹𝑧 / 𝑥𝐵)
14 vex 3203 . . . . . . . . . . . 12 𝑧 ∈ V
15 csbconstg 3546 . . . . . . . . . . . 12 (𝑧 ∈ V → 𝑧 / 𝑥𝐹 = 𝐹)
1614, 15ax-mp 5 . . . . . . . . . . 11 𝑧 / 𝑥𝐹 = 𝐹
1716imaeq1i 5463 . . . . . . . . . 10 (𝑧 / 𝑥𝐹𝑧 / 𝑥𝐵) = (𝐹𝑧 / 𝑥𝐵)
1813, 17eqtri 2644 . . . . . . . . 9 𝑧 / 𝑥(𝐹𝐵) = (𝐹𝑧 / 𝑥𝐵)
1912, 18ineq12i 3812 . . . . . . . 8 (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵))
2019eqeq1i 2627 . . . . . . 7 ((𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅ ↔ ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅)
216, 20syl6ibr 242 . . . . . 6 (Fun 𝐹 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅))
2221orim2d 885 . . . . 5 (Fun 𝐹 → ((𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
2322ralimdv 2963 . . . 4 (Fun 𝐹 → (∀𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ∀𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
2423ralimdv 2963 . . 3 (Fun 𝐹 → (∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
25 disjors 4635 . . 3 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
26 disjors 4635 . . 3 (Disj 𝑥𝐴 (𝐹𝐵) ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅))
2724, 25, 263imtr4g 285 . 2 (Fun 𝐹 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 (𝐹𝐵)))
2827imp 445 1 ((Fun 𝐹Disj 𝑥𝐴 𝐵) → Disj 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  csb 3533  cin 3573  c0 3915  Disj wdisj 4620  ccnv 5113  cima 5117  Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-disj 4621  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890
This theorem is referenced by:  sibfof  30402  dstrvprob  30533
  Copyright terms: Public domain W3C validator