HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr Structured version   Visualization version   GIF version

Theorem cvbr 29141
Description: Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cvbr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . 5 (𝑦 = 𝐴 → (𝑦C𝐴C ))
21anbi1d 741 . . . 4 (𝑦 = 𝐴 → ((𝑦C𝑧C ) ↔ (𝐴C𝑧C )))
3 psseq1 3694 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑧𝐴𝑧))
4 psseq1 3694 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
54anbi1d 741 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝑧) ↔ (𝐴𝑥𝑥𝑧)))
65rexbidv 3052 . . . . . 6 (𝑦 = 𝐴 → (∃𝑥C (𝑦𝑥𝑥𝑧) ↔ ∃𝑥C (𝐴𝑥𝑥𝑧)))
76notbid 308 . . . . 5 (𝑦 = 𝐴 → (¬ ∃𝑥C (𝑦𝑥𝑥𝑧) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)))
83, 7anbi12d 747 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧)) ↔ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧))))
92, 8anbi12d 747 . . 3 (𝑦 = 𝐴 → (((𝑦C𝑧C ) ∧ (𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧))) ↔ ((𝐴C𝑧C ) ∧ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)))))
10 eleq1 2689 . . . . 5 (𝑧 = 𝐵 → (𝑧C𝐵C ))
1110anbi2d 740 . . . 4 (𝑧 = 𝐵 → ((𝐴C𝑧C ) ↔ (𝐴C𝐵C )))
12 psseq2 3695 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
13 psseq2 3695 . . . . . . . 8 (𝑧 = 𝐵 → (𝑥𝑧𝑥𝐵))
1413anbi2d 740 . . . . . . 7 (𝑧 = 𝐵 → ((𝐴𝑥𝑥𝑧) ↔ (𝐴𝑥𝑥𝐵)))
1514rexbidv 3052 . . . . . 6 (𝑧 = 𝐵 → (∃𝑥C (𝐴𝑥𝑥𝑧) ↔ ∃𝑥C (𝐴𝑥𝑥𝐵)))
1615notbid 308 . . . . 5 (𝑧 = 𝐵 → (¬ ∃𝑥C (𝐴𝑥𝑥𝑧) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))
1712, 16anbi12d 747 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)) ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
1811, 17anbi12d 747 . . 3 (𝑧 = 𝐵 → (((𝐴C𝑧C ) ∧ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧))) ↔ ((𝐴C𝐵C ) ∧ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))))
19 df-cv 29138 . . 3 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦C𝑧C ) ∧ (𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧)))}
209, 18, 19brabg 4994 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ ((𝐴C𝐵C ) ∧ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))))
2120bianabs 924 1 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  wpss 3575   class class class wbr 4653   C cch 27786   ccv 27821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cv 29138
This theorem is referenced by:  cvbr2  29142  cvcon3  29143  cvpss  29144  cvnbtwn  29145
  Copyright terms: Public domain W3C validator