Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmcov Structured version   Visualization version   GIF version

Theorem cvmcov 31245
Description: Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmcov.2 𝑋 = 𝐽
Assertion
Ref Expression
cvmcov ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃𝑋) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑃,𝑘,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmcov
StepHypRef Expression
1 cvmcov.1 . . . . 5 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmcov.2 . . . . 5 𝑋 = 𝐽
31, 2iscvm 31241 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅)))
43simprbi 480 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅))
5 eleq1 2689 . . . . . 6 (𝑥 = 𝑃 → (𝑥𝑘𝑃𝑘))
65anbi1d 741 . . . . 5 (𝑥 = 𝑃 → ((𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) ↔ (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
76rexbidv 3052 . . . 4 (𝑥 = 𝑃 → (∃𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) ↔ ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
87rspcv 3305 . . 3 (𝑃𝑋 → (∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) → ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
94, 8mpan9 486 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃𝑋) → ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅))
10 nfv 1843 . . . 4 𝑘 𝑃𝑥
11 nfmpt1 4747 . . . . . . 7 𝑘(𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
121, 11nfcxfr 2762 . . . . . 6 𝑘𝑆
13 nfcv 2764 . . . . . 6 𝑘𝑥
1412, 13nffv 6198 . . . . 5 𝑘(𝑆𝑥)
15 nfcv 2764 . . . . 5 𝑘
1614, 15nfne 2894 . . . 4 𝑘(𝑆𝑥) ≠ ∅
1710, 16nfan 1828 . . 3 𝑘(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅)
18 nfv 1843 . . 3 𝑥(𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)
19 eleq2 2690 . . . 4 (𝑥 = 𝑘 → (𝑃𝑥𝑃𝑘))
20 fveq2 6191 . . . . 5 (𝑥 = 𝑘 → (𝑆𝑥) = (𝑆𝑘))
2120neeq1d 2853 . . . 4 (𝑥 = 𝑘 → ((𝑆𝑥) ≠ ∅ ↔ (𝑆𝑘) ≠ ∅))
2219, 21anbi12d 747 . . 3 (𝑥 = 𝑘 → ((𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅) ↔ (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅)))
2317, 18, 22cbvrex 3168 . 2 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅) ↔ ∃𝑘𝐽 (𝑃𝑘 ∧ (𝑆𝑘) ≠ ∅))
249, 23sylibr 224 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃𝑋) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  cin 3573  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436  cmpt 4729  ccnv 5113  cres 5116  cima 5117  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698   Cn ccn 21028  Homeochmeo 21556   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-cvm 31238
This theorem is referenced by:  cvmcov2  31257  cvmopnlem  31260  cvmfolem  31261  cvmliftmolem2  31264  cvmliftlem15  31280  cvmlift2lem10  31294  cvmlift3lem8  31308
  Copyright terms: Public domain W3C validator