Step | Hyp | Ref
| Expression |
1 | | simpll 790 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
2 | | cvmcn 31244 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
3 | 2 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
4 | | cvmseu.1 |
. . . . . . . . . 10
⊢ 𝐵 = ∪
𝐶 |
5 | | eqid 2622 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
6 | 4, 5 | cnf 21050 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶∪ 𝐽) |
7 | 3, 6 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐹:𝐵⟶∪ 𝐽) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → 𝐹:𝐵⟶∪ 𝐽) |
9 | | elssuni 4467 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐶 → 𝐴 ⊆ ∪ 𝐶) |
10 | 9, 4 | syl6sseqr 3652 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐶 → 𝐴 ⊆ 𝐵) |
11 | 10 | adantl 482 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐴 ⊆ 𝐵) |
12 | 11 | sselda 3603 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
13 | 8, 12 | ffvelrnd 6360 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ∪ 𝐽) |
14 | | cvmcov.1 |
. . . . . . 7
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
15 | 14, 5 | cvmcov 31245 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐹‘𝑧) ∈ ∪ 𝐽) → ∃𝑡 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅)) |
16 | 1, 13, 15 | syl2anc 693 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → ∃𝑡 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅)) |
17 | | n0 3931 |
. . . . . . . 8
⊢ ((𝑆‘𝑡) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑆‘𝑡)) |
18 | | inss2 3834 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) |
19 | | resima2 5432 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) → ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)))) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
21 | | simprr 796 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑤 ∈ (𝑆‘𝑡)) |
22 | 1 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
23 | 12 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ 𝐵) |
24 | | simprl 794 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹‘𝑧) ∈ 𝑡) |
25 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(℩𝑥
∈ 𝑤 𝑧 ∈ 𝑥) = (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) |
26 | 14, 4, 25 | cvmsiota 31259 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑤 ∈ (𝑆‘𝑡) ∧ 𝑧 ∈ 𝐵 ∧ (𝐹‘𝑧) ∈ 𝑡)) → ((℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤 ∧ 𝑧 ∈ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
27 | 22, 21, 23, 24, 26 | syl13anc 1328 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤 ∧ 𝑧 ∈ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
28 | 27 | simpld 475 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤) |
29 | 14 | cvmshmeo 31253 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ (𝑆‘𝑡) ∧ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥) ∈ 𝑤) → (𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ ((𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))Homeo(𝐽 ↾t 𝑡))) |
30 | 21, 28, 29 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ ((𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))Homeo(𝐽 ↾t 𝑡))) |
31 | | cvmtop1 31242 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
32 | 22, 31 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐶 ∈ Top) |
33 | | simpllr 799 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐴 ∈ 𝐶) |
34 | | elrestr 16089 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ Top ∧
(℩𝑥 ∈
𝑤 𝑧 ∈ 𝑥) ∈ 𝑤 ∧ 𝐴 ∈ 𝐶) → (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ (𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
35 | 32, 28, 33, 34 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ (𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
36 | | hmeoima 21568 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ ((𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))Homeo(𝐽 ↾t 𝑡)) ∧ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ∈ (𝐶 ↾t (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡)) |
37 | 30, 35, 36 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((𝐹 ↾ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡)) |
38 | 20, 37 | syl5eqelr 2706 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡)) |
39 | | cvmtop2 31243 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) |
40 | 39 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐽 ∈ Top) |
41 | 40 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐽 ∈ Top) |
42 | 14 | cvmsrcl 31246 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (𝑆‘𝑡) → 𝑡 ∈ 𝐽) |
43 | 42 | ad2antll 765 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑡 ∈ 𝐽) |
44 | | restopn2 20981 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝐽) → ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡) ↔ ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ 𝑡))) |
45 | 41, 43, 44 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ (𝐽 ↾t 𝑡) ↔ ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ 𝑡))) |
46 | 38, 45 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ 𝑡)) |
47 | 46 | simpld 475 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽) |
48 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝐵⟶∪ 𝐽 → 𝐹 Fn 𝐵) |
49 | 7, 48 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → 𝐹 Fn 𝐵) |
50 | 49 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐹 Fn 𝐵) |
51 | | inss1 3833 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐴 |
52 | 33, 10 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝐴 ⊆ 𝐵) |
53 | 51, 52 | syl5ss 3614 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐵) |
54 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ 𝐴) |
55 | 27 | simprd 479 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) |
56 | 54, 55 | elind 3798 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → 𝑧 ∈ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) |
57 | | fnfvima 6496 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐵 ∧ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐵 ∧ 𝑧 ∈ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → (𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)))) |
58 | 50, 53, 56, 57 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)))) |
59 | | imass2 5501 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥)) ⊆ 𝐴 → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴)) |
60 | 51, 59 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴)) |
61 | | eleq2 2690 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → ((𝐹‘𝑧) ∈ 𝑦 ↔ (𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))))) |
62 | | sseq1 3626 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → (𝑦 ⊆ (𝐹 “ 𝐴) ↔ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴))) |
63 | 61, 62 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) → (((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ((𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴)))) |
64 | 63 | rspcev 3309 |
. . . . . . . . . . 11
⊢ (((𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∈ 𝐽 ∧ ((𝐹‘𝑧) ∈ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ∧ (𝐹 “ (𝐴 ∩ (℩𝑥 ∈ 𝑤 𝑧 ∈ 𝑥))) ⊆ (𝐹 “ 𝐴))) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
65 | 47, 58, 60, 64 | syl12anc 1324 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑧) ∈ 𝑡 ∧ 𝑤 ∈ (𝑆‘𝑡))) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
66 | 65 | expr 643 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ (𝐹‘𝑧) ∈ 𝑡) → (𝑤 ∈ (𝑆‘𝑡) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
67 | 66 | exlimdv 1861 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ (𝐹‘𝑧) ∈ 𝑡) → (∃𝑤 𝑤 ∈ (𝑆‘𝑡) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
68 | 17, 67 | syl5bi 232 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) ∧ (𝐹‘𝑧) ∈ 𝑡) → ((𝑆‘𝑡) ≠ ∅ → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
69 | 68 | expimpd 629 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → (((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
70 | 69 | rexlimdvw 3034 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → (∃𝑡 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑡 ∧ (𝑆‘𝑡) ≠ ∅) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
71 | 16, 70 | mpd 15 |
. . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) ∧ 𝑧 ∈ 𝐴) → ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
72 | 71 | ralrimiva 2966 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
73 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑧) → (𝑥 ∈ 𝑦 ↔ (𝐹‘𝑧) ∈ 𝑦)) |
74 | 73 | anbi1d 741 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
75 | 74 | rexbidv 3052 |
. . . . 5
⊢ (𝑥 = (𝐹‘𝑧) → (∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
76 | 75 | ralima 6498 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ 𝐵) → (∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
77 | 49, 11, 76 | syl2anc 693 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)) ↔ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐽 ((𝐹‘𝑧) ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
78 | 72, 77 | mpbird 247 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → ∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴))) |
79 | | eltop2 20779 |
. . 3
⊢ (𝐽 ∈ Top → ((𝐹 “ 𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
80 | 40, 79 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → ((𝐹 “ 𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹 “ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝐹 “ 𝐴)))) |
81 | 78, 80 | mpbird 247 |
1
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) |