![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvelrn | Structured version Visualization version GIF version |
Description: A function's value belongs to its range, analogous to fvelrn 6352. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5929 | . . . . . 6 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {𝐴})) | |
2 | 1 | anim1i 592 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹)) |
3 | 2 | ancomd 467 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
4 | df-dfat 41196 | . . . 4 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
5 | 3, 4 | sylibr 224 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
6 | afvfundmfveq 41218 | . . . 4 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
7 | 6 | eqcomd 2628 | . . 3 ⊢ (𝐹 defAt 𝐴 → (𝐹‘𝐴) = (𝐹'''𝐴)) |
8 | 5, 7 | syl 17 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = (𝐹'''𝐴)) |
9 | fvelrn 6352 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | |
10 | 8, 9 | eqeltrrd 2702 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {csn 4177 dom cdm 5114 ran crn 5115 ↾ cres 5116 Fun wfun 5882 ‘cfv 5888 defAt wdfat 41193 '''cafv 41194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-dfat 41196 df-afv 41197 |
This theorem is referenced by: fnafvelrn 41249 |
Copyright terms: Public domain | W3C validator |