![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfateq12d | Structured version Visualization version GIF version |
Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
dfateq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
dfateq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
dfateq12d | ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfateq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dfateq12d.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = 𝐺) | |
3 | 2 | dmeqd 5326 | . . . 4 ⊢ (𝜑 → dom 𝐹 = dom 𝐺) |
4 | 1, 3 | eleq12d 2695 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝐹 ↔ 𝐵 ∈ dom 𝐺)) |
5 | 1 | sneqd 4189 | . . . . 5 ⊢ (𝜑 → {𝐴} = {𝐵}) |
6 | 2, 5 | reseq12d 5397 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ {𝐴}) = (𝐺 ↾ {𝐵})) |
7 | 6 | funeqd 5910 | . . 3 ⊢ (𝜑 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun (𝐺 ↾ {𝐵}))) |
8 | 4, 7 | anbi12d 747 | . 2 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵})))) |
9 | df-dfat 41196 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
10 | df-dfat 41196 | . 2 ⊢ (𝐺 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵}))) | |
11 | 8, 9, 10 | 3bitr4g 303 | 1 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {csn 4177 dom cdm 5114 ↾ cres 5116 Fun wfun 5882 defAt wdfat 41193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-fun 5890 df-dfat 41196 |
This theorem is referenced by: afveq12d 41213 |
Copyright terms: Public domain | W3C validator |