![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovmpt4g | Structured version Visualization version GIF version |
Description: Value of a function given by the "maps to" notation, analogous to ovmpt4g 6783. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovmpt4g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
aovmpt4g | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aovmpt4g.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | dmmpt2g 7243 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) |
3 | opelxpi 5148 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) | |
4 | eleq2 2690 | . . . . . . 7 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ dom 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
5 | 3, 4 | syl5ibr 236 | . . . . . 6 ⊢ (dom 𝐹 = (𝐴 × 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ dom 𝐹)) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ dom 𝐹)) |
7 | 6 | impcom 446 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝐶 ∈ 𝑉) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
8 | 7 | 3impa 1259 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
9 | 1 | mpt2fun 6762 | . . . 4 ⊢ Fun 𝐹 |
10 | funres 5929 | . . . 4 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {〈𝑥, 𝑦〉})) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ Fun (𝐹 ↾ {〈𝑥, 𝑦〉}) |
12 | df-dfat 41196 | . . . 4 ⊢ (𝐹 defAt 〈𝑥, 𝑦〉 ↔ (〈𝑥, 𝑦〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝑥, 𝑦〉}))) | |
13 | aovfundmoveq 41261 | . . . 4 ⊢ (𝐹 defAt 〈𝑥, 𝑦〉 → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) | |
14 | 12, 13 | sylbir 225 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝑥, 𝑦〉})) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
15 | 8, 11, 14 | sylancl 694 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦)) |
16 | 1 | ovmpt4g 6783 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) |
17 | 15, 16 | eqtrd 2656 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {csn 4177 〈cop 4183 × cxp 5112 dom cdm 5114 ↾ cres 5116 Fun wfun 5882 (class class class)co 6650 ↦ cmpt2 6652 defAt wdfat 41193 ((caov 41195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-dfat 41196 df-afv 41197 df-aov 41198 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |