| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lim | Structured version Visualization version Unicode version | ||
| Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 5781, dflim3 7047, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-lim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | 1 | wlim 5724 |
. 2
|
| 3 | 1 | word 5722 |
. . 3
|
| 4 | c0 3915 |
. . . 4
| |
| 5 | 1, 4 | wne 2794 |
. . 3
|
| 6 | 1 | cuni 4436 |
. . . 4
|
| 7 | 1, 6 | wceq 1483 |
. . 3
|
| 8 | 3, 5, 7 | w3a 1037 |
. 2
|
| 9 | 2, 8 | wb 196 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: limeq 5735 dflim2 5781 limord 5784 limuni 5785 unizlim 5844 limon 7036 dflim3 7047 nnsuc 7082 onfununi 7438 dfrdg2 31701 ellimits 32017 onsucuni3 33215 |
| Copyright terms: Public domain | W3C validator |