![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-lim | Structured version Visualization version Unicode version |
Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 5781, dflim3 7047, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
df-lim |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA |
. . 3
![]() ![]() | |
2 | 1 | wlim 5724 |
. 2
![]() ![]() ![]() |
3 | 1 | word 5722 |
. . 3
![]() ![]() ![]() |
4 | c0 3915 |
. . . 4
![]() ![]() | |
5 | 1, 4 | wne 2794 |
. . 3
![]() ![]() ![]() ![]() |
6 | 1 | cuni 4436 |
. . . 4
![]() ![]() ![]() |
7 | 1, 6 | wceq 1483 |
. . 3
![]() ![]() ![]() ![]() ![]() |
8 | 3, 5, 7 | w3a 1037 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2, 8 | wb 196 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: limeq 5735 dflim2 5781 limord 5784 limuni 5785 unizlim 5844 limon 7036 dflim3 7047 nnsuc 7082 onfununi 7438 dfrdg2 31701 ellimits 32017 onsucuni3 33215 |
Copyright terms: Public domain | W3C validator |