Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucuni3 Structured version   Visualization version   GIF version

Theorem onsucuni3 33215
Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
onsucuni3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)

Proof of Theorem onsucuni3
StepHypRef Expression
1 eloni 5733 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
213ad2ant1 1082 . . . 4 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → Ord 𝐵)
3 orduniorsuc 7030 . . . 4 (Ord 𝐵 → (𝐵 = 𝐵𝐵 = suc 𝐵))
42, 3syl 17 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = 𝐵𝐵 = suc 𝐵))
54orcomd 403 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = suc 𝐵𝐵 = 𝐵))
6 simp2 1062 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 ≠ ∅)
7 df-lim 5728 . . . . . . . 8 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
87biimpri 218 . . . . . . 7 ((Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵) → Lim 𝐵)
983expb 1266 . . . . . 6 ((Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)) → Lim 𝐵)
109con3i 150 . . . . 5 (¬ Lim 𝐵 → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
11103ad2ant3 1084 . . . 4 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
122, 11mpnanrd 33178 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
136, 12mpnanrd 33178 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ 𝐵 = 𝐵)
14 orcom 402 . . 3 ((𝐵 = suc 𝐵𝐵 = 𝐵) ↔ (𝐵 = 𝐵𝐵 = suc 𝐵))
15 df-or 385 . . 3 ((𝐵 = 𝐵𝐵 = suc 𝐵) ↔ (¬ 𝐵 = 𝐵𝐵 = suc 𝐵))
1614, 15sylbb 209 . 2 ((𝐵 = suc 𝐵𝐵 = 𝐵) → (¬ 𝐵 = 𝐵𝐵 = suc 𝐵))
175, 13, 16sylc 65 1 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  c0 3915   cuni 4436  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729
This theorem is referenced by:  1oequni2o  33216  rdgsucuni  33217  finxpreclem4  33231
  Copyright terms: Public domain W3C validator