![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnsuc | Structured version Visualization version GIF version |
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
nnsuc | ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnlim 7078 | . . . 4 ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ¬ Lim 𝐴) |
3 | nnord 7073 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
4 | orduninsuc 7043 | . . . . . 6 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
6 | df-lim 5728 | . . . . . . 7 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
7 | 6 | biimpri 218 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) |
8 | 7 | 3expia 1267 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (𝐴 = ∪ 𝐴 → Lim 𝐴)) |
9 | 5, 8 | sylbird 250 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴)) |
10 | 3, 9 | sylan 488 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴)) |
11 | 2, 10 | mt3d 140 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) |
12 | eleq1 2689 | . . . . . . . 8 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
13 | 12 | biimpcd 239 | . . . . . . 7 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → suc 𝑥 ∈ ω)) |
14 | peano2b 7081 | . . . . . . 7 ⊢ (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω) | |
15 | 13, 14 | syl6ibr 242 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → 𝑥 ∈ ω)) |
16 | 15 | ancrd 577 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥))) |
17 | 16 | adantld 483 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥))) |
18 | 17 | reximdv2 3014 | . . 3 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
19 | 18 | adantr 481 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
20 | 11, 19 | mpd 15 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 ∅c0 3915 ∪ cuni 4436 Ord word 5722 Oncon0 5723 Lim wlim 5724 suc csuc 5725 ωcom 7065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-om 7066 |
This theorem is referenced by: peano5 7089 nn0suc 7090 inf3lemd 8524 infpssrlem4 9128 fin1a2lem6 9227 bnj158 30797 bnj1098 30854 bnj594 30982 |
Copyright terms: Public domain | W3C validator |