| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcleqf | Structured version Visualization version GIF version | ||
| Description: Equality connective between classes. Same as dfcleq 2616, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| dfcleqf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfcleqf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| dfcleqf | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleqf.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfcleqf.2 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | cleqf 2790 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∀wal 1481 = wceq 1483 ∈ wcel 1990 Ⅎwnfc 2751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: ssmapsn 39408 infnsuprnmpt 39465 preimagelt 40912 preimalegt 40913 pimrecltpos 40919 pimrecltneg 40933 smfaddlem1 40971 smflimsuplem7 41032 |
| Copyright terms: Public domain | W3C validator |