Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmapsn Structured version   Visualization version   GIF version

Theorem ssmapsn 39408
Description: A subset 𝐶 of a set exponentiation to a singleton, is its projection 𝐷 exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ssmapsn.f 𝑓𝐷
ssmapsn.a (𝜑𝐴𝑉)
ssmapsn.c (𝜑𝐶 ⊆ (𝐵𝑚 {𝐴}))
ssmapsn.d 𝐷 = 𝑓𝐶 ran 𝑓
Assertion
Ref Expression
ssmapsn (𝜑𝐶 = (𝐷𝑚 {𝐴}))
Distinct variable groups:   𝐴,𝑓   𝐶,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem ssmapsn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ssmapsn.c . . . . . . . . 9 (𝜑𝐶 ⊆ (𝐵𝑚 {𝐴}))
21sselda 3603 . . . . . . . 8 ((𝜑𝑓𝐶) → 𝑓 ∈ (𝐵𝑚 {𝐴}))
3 elmapi 7879 . . . . . . . 8 (𝑓 ∈ (𝐵𝑚 {𝐴}) → 𝑓:{𝐴}⟶𝐵)
42, 3syl 17 . . . . . . 7 ((𝜑𝑓𝐶) → 𝑓:{𝐴}⟶𝐵)
54ffnd 6046 . . . . . 6 ((𝜑𝑓𝐶) → 𝑓 Fn {𝐴})
6 ssmapsn.d . . . . . . . . 9 𝐷 = 𝑓𝐶 ran 𝑓
76a1i 11 . . . . . . . 8 (𝜑𝐷 = 𝑓𝐶 ran 𝑓)
8 ovexd 6680 . . . . . . . . . . 11 (𝜑 → (𝐵𝑚 {𝐴}) ∈ V)
98, 1ssexd 4805 . . . . . . . . . 10 (𝜑𝐶 ∈ V)
10 rnexg 7098 . . . . . . . . . . . 12 (𝑓𝐶 → ran 𝑓 ∈ V)
1110rgen 2922 . . . . . . . . . . 11 𝑓𝐶 ran 𝑓 ∈ V
1211a1i 11 . . . . . . . . . 10 (𝜑 → ∀𝑓𝐶 ran 𝑓 ∈ V)
139, 12jca 554 . . . . . . . . 9 (𝜑 → (𝐶 ∈ V ∧ ∀𝑓𝐶 ran 𝑓 ∈ V))
14 iunexg 7143 . . . . . . . . 9 ((𝐶 ∈ V ∧ ∀𝑓𝐶 ran 𝑓 ∈ V) → 𝑓𝐶 ran 𝑓 ∈ V)
1513, 14syl 17 . . . . . . . 8 (𝜑 𝑓𝐶 ran 𝑓 ∈ V)
167, 15eqeltrd 2701 . . . . . . 7 (𝜑𝐷 ∈ V)
1716adantr 481 . . . . . 6 ((𝜑𝑓𝐶) → 𝐷 ∈ V)
18 ssiun2 4563 . . . . . . . . 9 (𝑓𝐶 → ran 𝑓 𝑓𝐶 ran 𝑓)
1918adantl 482 . . . . . . . 8 ((𝜑𝑓𝐶) → ran 𝑓 𝑓𝐶 ran 𝑓)
20 ssmapsn.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
21 snidg 4206 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴})
2220, 21syl 17 . . . . . . . . . 10 (𝜑𝐴 ∈ {𝐴})
2322adantr 481 . . . . . . . . 9 ((𝜑𝑓𝐶) → 𝐴 ∈ {𝐴})
24 fnfvelrn 6356 . . . . . . . . 9 ((𝑓 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓𝐴) ∈ ran 𝑓)
255, 23, 24syl2anc 693 . . . . . . . 8 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ ran 𝑓)
2619, 25sseldd 3604 . . . . . . 7 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ 𝑓𝐶 ran 𝑓)
2726, 6syl6eleqr 2712 . . . . . 6 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ 𝐷)
285, 17, 27elmapsnd 39396 . . . . 5 ((𝜑𝑓𝐶) → 𝑓 ∈ (𝐷𝑚 {𝐴}))
2928ex 450 . . . 4 (𝜑 → (𝑓𝐶𝑓 ∈ (𝐷𝑚 {𝐴})))
3016adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) → 𝐷 ∈ V)
31 snex 4908 . . . . . . . . . 10 {𝐴} ∈ V
3231a1i 11 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) → {𝐴} ∈ V)
33 simpr 477 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) → 𝑓 ∈ (𝐷𝑚 {𝐴}))
3422adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) → 𝐴 ∈ {𝐴})
3530, 32, 33, 34fvmap 39387 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) → (𝑓𝐴) ∈ 𝐷)
366idi 2 . . . . . . . . 9 𝐷 = 𝑓𝐶 ran 𝑓
37 rneq 5351 . . . . . . . . . 10 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
3837cbviunv 4559 . . . . . . . . 9 𝑓𝐶 ran 𝑓 = 𝑔𝐶 ran 𝑔
3936, 38eqtri 2644 . . . . . . . 8 𝐷 = 𝑔𝐶 ran 𝑔
4035, 39syl6eleq 2711 . . . . . . 7 ((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) → (𝑓𝐴) ∈ 𝑔𝐶 ran 𝑔)
41 eliun 4524 . . . . . . 7 ((𝑓𝐴) ∈ 𝑔𝐶 ran 𝑔 ↔ ∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔)
4240, 41sylib 208 . . . . . 6 ((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) → ∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔)
43 simp3 1063 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → (𝑓𝐴) ∈ ran 𝑔)
44 simp1l 1085 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝜑)
4544, 20syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝐴𝑉)
46 eqid 2622 . . . . . . . . . . 11 {𝐴} = {𝐴}
47 simp1r 1086 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 ∈ (𝐷𝑚 {𝐴}))
48 elmapfn 7880 . . . . . . . . . . . 12 (𝑓 ∈ (𝐷𝑚 {𝐴}) → 𝑓 Fn {𝐴})
4947, 48syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 Fn {𝐴})
501sselda 3603 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐶) → 𝑔 ∈ (𝐵𝑚 {𝐴}))
51 elmapfn 7880 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝐵𝑚 {𝐴}) → 𝑔 Fn {𝐴})
5250, 51syl 17 . . . . . . . . . . . . 13 ((𝜑𝑔𝐶) → 𝑔 Fn {𝐴})
53523adant3 1081 . . . . . . . . . . . 12 ((𝜑𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴})
54533adant1r 1319 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴})
5545, 46, 49, 54fsneqrn 39403 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → (𝑓 = 𝑔 ↔ (𝑓𝐴) ∈ ran 𝑔))
5643, 55mpbird 247 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 = 𝑔)
57 simp2 1062 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔𝐶)
5856, 57eqeltrd 2701 . . . . . . . 8 (((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓𝐶)
59583exp 1264 . . . . . . 7 ((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) → (𝑔𝐶 → ((𝑓𝐴) ∈ ran 𝑔𝑓𝐶)))
6059rexlimdv 3030 . . . . . 6 ((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) → (∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔𝑓𝐶))
6142, 60mpd 15 . . . . 5 ((𝜑𝑓 ∈ (𝐷𝑚 {𝐴})) → 𝑓𝐶)
6261ex 450 . . . 4 (𝜑 → (𝑓 ∈ (𝐷𝑚 {𝐴}) → 𝑓𝐶))
6329, 62impbid 202 . . 3 (𝜑 → (𝑓𝐶𝑓 ∈ (𝐷𝑚 {𝐴})))
6463alrimiv 1855 . 2 (𝜑 → ∀𝑓(𝑓𝐶𝑓 ∈ (𝐷𝑚 {𝐴})))
65 nfcv 2764 . . 3 𝑓𝐶
66 ssmapsn.f . . . 4 𝑓𝐷
67 nfcv 2764 . . . 4 𝑓𝑚
68 nfcv 2764 . . . 4 𝑓{𝐴}
6966, 67, 68nfov 6676 . . 3 𝑓(𝐷𝑚 {𝐴})
7065, 69dfcleqf 39255 . 2 (𝐶 = (𝐷𝑚 {𝐴}) ↔ ∀𝑓(𝑓𝐶𝑓 ∈ (𝐷𝑚 {𝐴})))
7164, 70sylibr 224 1 (𝜑𝐶 = (𝐷𝑚 {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wnfc 2751  wral 2912  wrex 2913  Vcvv 3200  wss 3574  {csn 4177   ciun 4520  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  vonvolmbllem  40874  vonvolmbl2  40877  vonvol2  40878
  Copyright terms: Public domain W3C validator