| Step | Hyp | Ref
| Expression |
| 1 | | ssmapsn.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ⊆ (𝐵 ↑𝑚 {𝐴})) |
| 2 | 1 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓 ∈ (𝐵 ↑𝑚 {𝐴})) |
| 3 | | elmapi 7879 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝐵 ↑𝑚 {𝐴}) → 𝑓:{𝐴}⟶𝐵) |
| 4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓:{𝐴}⟶𝐵) |
| 5 | 4 | ffnd 6046 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓 Fn {𝐴}) |
| 6 | | ssmapsn.d |
. . . . . . . . 9
⊢ 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 |
| 7 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓) |
| 8 | | ovexd 6680 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ↑𝑚 {𝐴}) ∈ V) |
| 9 | 8, 1 | ssexd 4805 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ V) |
| 10 | | rnexg 7098 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ 𝐶 → ran 𝑓 ∈ V) |
| 11 | 10 | rgen 2922 |
. . . . . . . . . . 11
⊢
∀𝑓 ∈
𝐶 ran 𝑓 ∈ V |
| 12 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑓 ∈ 𝐶 ran 𝑓 ∈ V) |
| 13 | 9, 12 | jca 554 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 ∈ V ∧ ∀𝑓 ∈ 𝐶 ran 𝑓 ∈ V)) |
| 14 | | iunexg 7143 |
. . . . . . . . 9
⊢ ((𝐶 ∈ V ∧ ∀𝑓 ∈ 𝐶 ran 𝑓 ∈ V) → ∪ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V) |
| 15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑓 ∈ 𝐶 ran 𝑓 ∈ V) |
| 16 | 7, 15 | eqeltrd 2701 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ V) |
| 17 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝐷 ∈ V) |
| 18 | | ssiun2 4563 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝐶 → ran 𝑓 ⊆ ∪
𝑓 ∈ 𝐶 ran 𝑓) |
| 19 | 18 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → ran 𝑓 ⊆ ∪
𝑓 ∈ 𝐶 ran 𝑓) |
| 20 | | ssmapsn.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 21 | | snidg 4206 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
| 23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝐴 ∈ {𝐴}) |
| 24 | | fnfvelrn 6356 |
. . . . . . . . 9
⊢ ((𝑓 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓‘𝐴) ∈ ran 𝑓) |
| 25 | 5, 23, 24 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (𝑓‘𝐴) ∈ ran 𝑓) |
| 26 | 19, 25 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (𝑓‘𝐴) ∈ ∪
𝑓 ∈ 𝐶 ran 𝑓) |
| 27 | 26, 6 | syl6eleqr 2712 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (𝑓‘𝐴) ∈ 𝐷) |
| 28 | 5, 17, 27 | elmapsnd 39396 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) |
| 29 | 28 | ex 450 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ 𝐶 → 𝑓 ∈ (𝐷 ↑𝑚 {𝐴}))) |
| 30 | 16 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) → 𝐷 ∈ V) |
| 31 | | snex 4908 |
. . . . . . . . . 10
⊢ {𝐴} ∈ V |
| 32 | 31 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) → {𝐴} ∈ V) |
| 33 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) → 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) |
| 34 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) → 𝐴 ∈ {𝐴}) |
| 35 | 30, 32, 33, 34 | fvmap 39387 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) → (𝑓‘𝐴) ∈ 𝐷) |
| 36 | 6 | idi 2 |
. . . . . . . . 9
⊢ 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 |
| 37 | | rneq 5351 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔) |
| 38 | 37 | cbviunv 4559 |
. . . . . . . . 9
⊢ ∪ 𝑓 ∈ 𝐶 ran 𝑓 = ∪ 𝑔 ∈ 𝐶 ran 𝑔 |
| 39 | 36, 38 | eqtri 2644 |
. . . . . . . 8
⊢ 𝐷 = ∪ 𝑔 ∈ 𝐶 ran 𝑔 |
| 40 | 35, 39 | syl6eleq 2711 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) → (𝑓‘𝐴) ∈ ∪
𝑔 ∈ 𝐶 ran 𝑔) |
| 41 | | eliun 4524 |
. . . . . . 7
⊢ ((𝑓‘𝐴) ∈ ∪
𝑔 ∈ 𝐶 ran 𝑔 ↔ ∃𝑔 ∈ 𝐶 (𝑓‘𝐴) ∈ ran 𝑔) |
| 42 | 40, 41 | sylib 208 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) → ∃𝑔 ∈ 𝐶 (𝑓‘𝐴) ∈ ran 𝑔) |
| 43 | | simp3 1063 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → (𝑓‘𝐴) ∈ ran 𝑔) |
| 44 | | simp1l 1085 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝜑) |
| 45 | 44, 20 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝐴 ∈ 𝑉) |
| 46 | | eqid 2622 |
. . . . . . . . . . 11
⊢ {𝐴} = {𝐴} |
| 47 | | simp1r 1086 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) |
| 48 | | elmapfn 7880 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐷 ↑𝑚 {𝐴}) → 𝑓 Fn {𝐴}) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 Fn {𝐴}) |
| 50 | 1 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑔 ∈ (𝐵 ↑𝑚 {𝐴})) |
| 51 | | elmapfn 7880 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ (𝐵 ↑𝑚 {𝐴}) → 𝑔 Fn {𝐴}) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑔 Fn {𝐴}) |
| 53 | 52 | 3adant3 1081 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴}) |
| 54 | 53 | 3adant1r 1319 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴}) |
| 55 | 45, 46, 49, 54 | fsneqrn 39403 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → (𝑓 = 𝑔 ↔ (𝑓‘𝐴) ∈ ran 𝑔)) |
| 56 | 43, 55 | mpbird 247 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 = 𝑔) |
| 57 | | simp2 1062 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑔 ∈ 𝐶) |
| 58 | 56, 57 | eqeltrd 2701 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) ∧ 𝑔 ∈ 𝐶 ∧ (𝑓‘𝐴) ∈ ran 𝑔) → 𝑓 ∈ 𝐶) |
| 59 | 58 | 3exp 1264 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) → (𝑔 ∈ 𝐶 → ((𝑓‘𝐴) ∈ ran 𝑔 → 𝑓 ∈ 𝐶))) |
| 60 | 59 | rexlimdv 3030 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) → (∃𝑔 ∈ 𝐶 (𝑓‘𝐴) ∈ ran 𝑔 → 𝑓 ∈ 𝐶)) |
| 61 | 42, 60 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴})) → 𝑓 ∈ 𝐶) |
| 62 | 61 | ex 450 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝐷 ↑𝑚 {𝐴}) → 𝑓 ∈ 𝐶)) |
| 63 | 29, 62 | impbid 202 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐶 ↔ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴}))) |
| 64 | 63 | alrimiv 1855 |
. 2
⊢ (𝜑 → ∀𝑓(𝑓 ∈ 𝐶 ↔ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴}))) |
| 65 | | nfcv 2764 |
. . 3
⊢
Ⅎ𝑓𝐶 |
| 66 | | ssmapsn.f |
. . . 4
⊢
Ⅎ𝑓𝐷 |
| 67 | | nfcv 2764 |
. . . 4
⊢
Ⅎ𝑓
↑𝑚 |
| 68 | | nfcv 2764 |
. . . 4
⊢
Ⅎ𝑓{𝐴} |
| 69 | 66, 67, 68 | nfov 6676 |
. . 3
⊢
Ⅎ𝑓(𝐷 ↑𝑚 {𝐴}) |
| 70 | 65, 69 | dfcleqf 39255 |
. 2
⊢ (𝐶 = (𝐷 ↑𝑚 {𝐴}) ↔ ∀𝑓(𝑓 ∈ 𝐶 ↔ 𝑓 ∈ (𝐷 ↑𝑚 {𝐴}))) |
| 71 | 64, 70 | sylibr 224 |
1
⊢ (𝜑 → 𝐶 = (𝐷 ↑𝑚 {𝐴})) |