Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimrecltpos Structured version   Visualization version   GIF version

Theorem pimrecltpos 40919
Description: The preimage of an unbounded below, open interval, with positive upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimrecltpos.x 𝑥𝜑
pimrecltpos.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
pimrecltpos.n ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
pimrecltpos.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
pimrecltpos (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))

Proof of Theorem pimrecltpos
StepHypRef Expression
1 pimrecltpos.x . . 3 𝑥𝜑
2 rabidim1 3117 . . . . . . . . . . 11 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥𝐴)
32adantr 481 . . . . . . . . . 10 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥𝐴)
4 simpr 477 . . . . . . . . . 10 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝐵 < 0)
53, 4jca 554 . . . . . . . . 9 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → (𝑥𝐴𝐵 < 0))
6 rabid 3116 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < 0} ↔ (𝑥𝐴𝐵 < 0))
75, 6sylibr 224 . . . . . . . 8 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
8 elun2 3781 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
97, 8syl 17 . . . . . . 7 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
109adantll 750 . . . . . 6 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
11 0red 10041 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 ∈ ℝ)
12 pimrecltpos.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
132, 12sylan2 491 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ℝ)
1413adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 𝐵 ∈ ℝ)
152adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥𝐴)
16 pimrecltpos.n . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
1716necomd 2849 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≠ 𝐵)
1815, 17syldan 487 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ≠ 𝐵)
1918adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 ≠ 𝐵)
20 simpr 477 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → ¬ 𝐵 < 0)
2111, 14, 19, 20lttri5d 39513 . . . . . . 7 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 < 𝐵)
2215adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥𝐴)
2313adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
24 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 0 < 𝐵)
2523, 24elrpd 11869 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+)
26 pimrecltpos.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
2726ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ+)
28 rabidim2 39284 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → (1 / 𝐵) < 𝐶)
2928ad2antlr 763 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (1 / 𝐵) < 𝐶)
3025, 27, 29ltrec1d 11892 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (1 / 𝐶) < 𝐵)
3122, 30jca 554 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (𝑥𝐴 ∧ (1 / 𝐶) < 𝐵))
32 rabid 3116 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ↔ (𝑥𝐴 ∧ (1 / 𝐶) < 𝐵))
3331, 32sylibr 224 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵})
34 elun1 3780 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3533, 34syl 17 . . . . . . 7 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3621, 35syldan 487 . . . . . 6 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3710, 36pm2.61dan 832 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3837ex 450 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
3932simplbi 476 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → 𝑥𝐴)
4039adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥𝐴)
4126adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐶 ∈ ℝ+)
4240, 12syldan 487 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐵 ∈ ℝ)
43 0red 10041 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 ∈ ℝ)
4441rprecred 11883 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐶) ∈ ℝ)
4526rpred 11872 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
4626rpgt0d 11875 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐶)
4745, 46recgt0d 10958 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 / 𝐶))
4847adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 < (1 / 𝐶))
4932simprbi 480 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → (1 / 𝐶) < 𝐵)
5049adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐶) < 𝐵)
5143, 44, 42, 48, 50lttrd 10198 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 < 𝐵)
5242, 51elrpd 11869 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐵 ∈ ℝ+)
5341, 52, 50ltrec1d 11892 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐵) < 𝐶)
5440, 53jca 554 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
55 rabid 3116 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
5654, 55sylibr 224 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
5756adantlr 751 . . . . . 6 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
58 simpll 790 . . . . . . 7 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝜑)
59 elunnel1 3754 . . . . . . . 8 ((𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
6059adantll 750 . . . . . . 7 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
616simplbi 476 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝑥𝐴)
6261adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝑥𝐴)
6312, 16rereccld 10852 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℝ)
6462, 63syldan 487 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) ∈ ℝ)
65 0red 10041 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 0 ∈ ℝ)
6645adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐶 ∈ ℝ)
6762, 12syldan 487 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐵 ∈ ℝ)
686simprbi 480 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝐵 < 0)
6968adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐵 < 0)
7067, 69reclt0d 39607 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) < 0)
7146adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 0 < 𝐶)
7264, 65, 66, 70, 71lttrd 10198 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) < 𝐶)
7362, 72jca 554 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
7473, 55sylibr 224 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7558, 60, 74syl2anc 693 . . . . . 6 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7657, 75pm2.61dan 832 . . . . 5 ((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7776ex 450 . . . 4 (𝜑 → (𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}))
7838, 77impbid 202 . . 3 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
791, 78alrimi 2082 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
80 nfrab1 3122 . . 3 𝑥{𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}
81 nfrab1 3122 . . . 4 𝑥{𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}
82 nfrab1 3122 . . . 4 𝑥{𝑥𝐴𝐵 < 0}
8381, 82nfun 3769 . . 3 𝑥({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})
8480, 83dfcleqf 39255 . 2 ({𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
8579, 84sylibr 224 1 (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wnf 1708  wcel 1990  wne 2794  {crab 2916  cun 3572   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   < clt 10074   / cdiv 10684  +crp 11832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-rp 11833
This theorem is referenced by:  smfrec  40996
  Copyright terms: Public domain W3C validator