MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdm2 Structured version   Visualization version   GIF version

Theorem dfdm2 5667
Description: Alternate definition of domain df-dm 5124 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 5308 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 5647 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2644 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 4445 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 4445 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 5665 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2646 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 5125 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2631 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 5388 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 5 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 5389 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 5 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 5316 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2647 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 3765 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 3756 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2649 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  cun 3572   cuni 4436  ccnv 5113  dom cdm 5114  ran crn 5115  ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator