MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdm2 Structured version   Visualization version   Unicode version

Theorem dfdm2 5667
Description: Alternate definition of domain df-dm 5124 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2  |-  dom  A  =  U. U. ( `' A  o.  A )

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 5308 . . . . . 6  |-  `' ( `' A  o.  A
)  =  ( `' A  o.  `' `' A )
2 cocnvcnv2 5647 . . . . . 6  |-  ( `' A  o.  `' `' A )  =  ( `' A  o.  A
)
31, 2eqtri 2644 . . . . 5  |-  `' ( `' A  o.  A
)  =  ( `' A  o.  A )
43unieqi 4445 . . . 4  |-  U. `' ( `' A  o.  A
)  =  U. ( `' A  o.  A
)
54unieqi 4445 . . 3  |-  U. U. `' ( `' A  o.  A )  =  U. U. ( `' A  o.  A )
6 unidmrn 5665 . . 3  |-  U. U. `' ( `' A  o.  A )  =  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )
75, 6eqtr3i 2646 . 2  |-  U. U. ( `' A  o.  A
)  =  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )
8 df-rn 5125 . . . . 5  |-  ran  A  =  dom  `' A
98eqcomi 2631 . . . 4  |-  dom  `' A  =  ran  A
10 dmcoeq 5388 . . . 4  |-  ( dom  `' A  =  ran  A  ->  dom  ( `' A  o.  A )  =  dom  A )
119, 10ax-mp 5 . . 3  |-  dom  ( `' A  o.  A
)  =  dom  A
12 rncoeq 5389 . . . . 5  |-  ( dom  `' A  =  ran  A  ->  ran  ( `' A  o.  A )  =  ran  `' A )
139, 12ax-mp 5 . . . 4  |-  ran  ( `' A  o.  A
)  =  ran  `' A
14 dfdm4 5316 . . . 4  |-  dom  A  =  ran  `' A
1513, 14eqtr4i 2647 . . 3  |-  ran  ( `' A  o.  A
)  =  dom  A
1611, 15uneq12i 3765 . 2  |-  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )  =  ( dom  A  u.  dom  A )
17 unidm 3756 . 2  |-  ( dom 
A  u.  dom  A
)  =  dom  A
187, 16, 173eqtrri 2649 1  |-  dom  A  =  U. U. ( `' A  o.  A )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    u. cun 3572   U.cuni 4436   `'ccnv 5113   dom cdm 5114   ran crn 5115    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator