MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff14a Structured version   Visualization version   GIF version

Theorem dff14a 6527
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
dff14a (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff14a
StepHypRef Expression
1 dff13 6512 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2 con34b 306 . . . . 5 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ (𝐹𝑥) = (𝐹𝑦)))
3 df-ne 2795 . . . . . . 7 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
43bicomi 214 . . . . . 6 𝑥 = 𝑦𝑥𝑦)
5 df-ne 2795 . . . . . . 7 ((𝐹𝑥) ≠ (𝐹𝑦) ↔ ¬ (𝐹𝑥) = (𝐹𝑦))
65bicomi 214 . . . . . 6 (¬ (𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑥) ≠ (𝐹𝑦))
74, 6imbi12i 340 . . . . 5 ((¬ 𝑥 = 𝑦 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
82, 7bitri 264 . . . 4 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
982ralbii 2981 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
109anbi2i 730 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
111, 10bitri 264 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wne 2794  wral 2912  wf 5884  1-1wf1 5885  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896
This theorem is referenced by:  dff14b  6528  pthdlem1  26662  nnfoctbdjlem  40672
  Copyright terms: Public domain W3C validator