| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffv3 | Structured version Visualization version GIF version | ||
| Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| dffv3 | ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | elimasng 5491 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) | |
| 3 | df-br 4654 | . . . . . 6 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
| 4 | 2, 3 | syl6bbr 278 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
| 5 | 1, 4 | mpan2 707 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
| 6 | 5 | iotabidv 5872 | . . 3 ⊢ (𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
| 7 | df-fv 5896 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 8 | 6, 7 | syl6reqr 2675 | . 2 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
| 9 | fvprc 6185 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 10 | snprc 4253 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 11 | 10 | biimpi 206 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 12 | 11 | imaeq2d 5466 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅)) |
| 13 | ima0 5481 | . . . . . . 7 ⊢ (𝐹 “ ∅) = ∅ | |
| 14 | 12, 13 | syl6eq 2672 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅) |
| 15 | 14 | eleq2d 2687 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ ∅)) |
| 16 | 15 | iotabidv 5872 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝑥 ∈ ∅)) |
| 17 | noel 3919 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
| 18 | 17 | nex 1731 | . . . . . 6 ⊢ ¬ ∃𝑥 𝑥 ∈ ∅ |
| 19 | euex 2494 | . . . . . 6 ⊢ (∃!𝑥 𝑥 ∈ ∅ → ∃𝑥 𝑥 ∈ ∅) | |
| 20 | 18, 19 | mto 188 | . . . . 5 ⊢ ¬ ∃!𝑥 𝑥 ∈ ∅ |
| 21 | iotanul 5866 | . . . . 5 ⊢ (¬ ∃!𝑥 𝑥 ∈ ∅ → (℩𝑥𝑥 ∈ ∅) = ∅) | |
| 22 | 20, 21 | ax-mp 5 | . . . 4 ⊢ (℩𝑥𝑥 ∈ ∅) = ∅ |
| 23 | 16, 22 | syl6eq 2672 | . . 3 ⊢ (¬ 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∅) |
| 24 | 9, 23 | eqtr4d 2659 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
| 25 | 8, 24 | pm2.61i 176 | 1 ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∃!weu 2470 Vcvv 3200 ∅c0 3915 {csn 4177 〈cop 4183 class class class wbr 4653 “ cima 5117 ℩cio 5849 ‘cfv 5888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: dffv4 6188 fvco2 6273 shftval 13814 dffv5 32031 |
| Copyright terms: Public domain | W3C validator |