MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffv3 Structured version   Visualization version   GIF version

Theorem dffv3 6187
Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dffv3 (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem dffv3
StepHypRef Expression
1 vex 3203 . . . . 5 𝑥 ∈ V
2 elimasng 5491 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
3 df-br 4654 . . . . . 6 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
42, 3syl6bbr 278 . . . . 5 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
51, 4mpan2 707 . . . 4 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
65iotabidv 5872 . . 3 (𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥))
7 df-fv 5896 . . 3 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
86, 7syl6reqr 2675 . 2 (𝐴 ∈ V → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
9 fvprc 6185 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
10 snprc 4253 . . . . . . . . 9 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 206 . . . . . . . 8 𝐴 ∈ V → {𝐴} = ∅)
1211imaeq2d 5466 . . . . . . 7 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅))
13 ima0 5481 . . . . . . 7 (𝐹 “ ∅) = ∅
1412, 13syl6eq 2672 . . . . . 6 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅)
1514eleq2d 2687 . . . . 5 𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ ∅))
1615iotabidv 5872 . . . 4 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝑥 ∈ ∅))
17 noel 3919 . . . . . . 7 ¬ 𝑥 ∈ ∅
1817nex 1731 . . . . . 6 ¬ ∃𝑥 𝑥 ∈ ∅
19 euex 2494 . . . . . 6 (∃!𝑥 𝑥 ∈ ∅ → ∃𝑥 𝑥 ∈ ∅)
2018, 19mto 188 . . . . 5 ¬ ∃!𝑥 𝑥 ∈ ∅
21 iotanul 5866 . . . . 5 (¬ ∃!𝑥 𝑥 ∈ ∅ → (℩𝑥𝑥 ∈ ∅) = ∅)
2220, 21ax-mp 5 . . . 4 (℩𝑥𝑥 ∈ ∅) = ∅
2316, 22syl6eq 2672 . . 3 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∅)
249, 23eqtr4d 2659 . 2 𝐴 ∈ V → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
258, 24pm2.61i 176 1 (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  Vcvv 3200  c0 3915  {csn 4177  cop 4183   class class class wbr 4653  cima 5117  cio 5849  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896
This theorem is referenced by:  dffv4  6188  fvco2  6273  shftval  13814  dffv5  32031
  Copyright terms: Public domain W3C validator