MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom5 Structured version   Visualization version   GIF version

Theorem dfom5 8547
Description: ω is the smallest limit ordinal and can be defined as such (although the Axiom of Infinity is needed to ensure that at least one limit ordinal exists). (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
dfom5 ω = {𝑥 ∣ Lim 𝑥}

Proof of Theorem dfom5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elom3 8545 . . 3 (𝑦 ∈ ω ↔ ∀𝑥(Lim 𝑥𝑦𝑥))
2 vex 3203 . . . 4 𝑦 ∈ V
32elintab 4487 . . 3 (𝑦 {𝑥 ∣ Lim 𝑥} ↔ ∀𝑥(Lim 𝑥𝑦𝑥))
41, 3bitr4i 267 . 2 (𝑦 ∈ ω ↔ 𝑦 {𝑥 ∣ Lim 𝑥})
54eqriv 2619 1 ω = {𝑥 ∣ Lim 𝑥}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481   = wceq 1483  wcel 1990  {cab 2608   cint 4475  Lim wlim 5724  ωcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator