Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsalgen2 Structured version   Visualization version   GIF version

Theorem dfsalgen2 40559
Description: Alternate characterization of the sigma-algebra generated by a set. It is the smallest sigma-algebra, on the same base set, that includes the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
dfsalgen2.1 (𝜑𝑋𝑉)
Assertion
Ref Expression
dfsalgen2 (𝜑 → ((SalGen‘𝑋) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))))
Distinct variable groups:   𝑦,𝑆   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem dfsalgen2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . 8 ((SalGen‘𝑋) = 𝑆 → (SalGen‘𝑋) = 𝑆)
21eqcomd 2628 . . . . . . 7 ((SalGen‘𝑋) = 𝑆𝑆 = (SalGen‘𝑋))
32adantl 482 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 = (SalGen‘𝑋))
4 dfsalgen2.1 . . . . . . . 8 (𝜑𝑋𝑉)
5 salgencl 40550 . . . . . . . 8 (𝑋𝑉 → (SalGen‘𝑋) ∈ SAlg)
64, 5syl 17 . . . . . . 7 (𝜑 → (SalGen‘𝑋) ∈ SAlg)
76adantr 481 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) ∈ SAlg)
83, 7eqeltrd 2701 . . . . 5 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 ∈ SAlg)
9 unieq 4444 . . . . . . 7 ((SalGen‘𝑋) = 𝑆 (SalGen‘𝑋) = 𝑆)
109adantl 482 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) = 𝑆)
114adantr 481 . . . . . . 7 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋𝑉)
12 eqid 2622 . . . . . . 7 (SalGen‘𝑋) = (SalGen‘𝑋)
13 eqid 2622 . . . . . . 7 𝑋 = 𝑋
1411, 12, 13salgenuni 40555 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) = 𝑋)
1510, 14eqtr3d 2658 . . . . 5 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 = 𝑋)
1612sssalgen 40553 . . . . . . 7 (𝑋𝑉𝑋 ⊆ (SalGen‘𝑋))
1711, 16syl 17 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋 ⊆ (SalGen‘𝑋))
18 simpr 477 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) = 𝑆)
1917, 18sseqtrd 3641 . . . . 5 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋𝑆)
208, 15, 193jca 1242 . . . 4 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆))
213ad2antrr 762 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑆 = (SalGen‘𝑋))
2221adantrl 752 . . . . . . 7 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑆 = (SalGen‘𝑋))
2311ad2antrr 762 . . . . . . . . 9 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑋𝑉)
2423adantrl 752 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑋𝑉)
25 simplr 792 . . . . . . . . 9 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑦 ∈ SAlg)
2625adantrl 752 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑦 ∈ SAlg)
27 simpr 477 . . . . . . . . 9 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑋𝑦)
2827adantrl 752 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑋𝑦)
29 simprl 794 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑦 = 𝑋)
3024, 12, 26, 28, 29salgenss 40554 . . . . . . 7 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → (SalGen‘𝑋) ⊆ 𝑦)
3122, 30eqsstrd 3639 . . . . . 6 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑆𝑦)
3231ex 450 . . . . 5 (((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) → (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))
3332ralrimiva 2966 . . . 4 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))
3420, 33jca 554 . . 3 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦)))
3534ex 450 . 2 (𝜑 → ((SalGen‘𝑋) = 𝑆 → ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))))
364adantr 481 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑋𝑉)
37 simprl1 1106 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑆 ∈ SAlg)
38 simprl2 1107 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑆 = 𝑋)
39 simprl3 1108 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑋𝑆)
40 unieq 4444 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 𝑦 = 𝑤)
4140eqeq1d 2624 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → ( 𝑦 = 𝑋 𝑤 = 𝑋))
42 sseq2 3627 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝑋𝑦𝑋𝑤))
4341, 42anbi12d 747 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (( 𝑦 = 𝑋𝑋𝑦) ↔ ( 𝑤 = 𝑋𝑋𝑤)))
44 sseq2 3627 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑆𝑦𝑆𝑤))
4543, 44imbi12d 334 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ↔ (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤)))
4645cbvralv 3171 . . . . . . . . . . 11 (∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ↔ ∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
4746biimpi 206 . . . . . . . . . 10 (∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) → ∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
4847adantr 481 . . . . . . . . 9 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ 𝑤 ∈ SAlg) → ∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
49 simpr 477 . . . . . . . . 9 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ 𝑤 ∈ SAlg) → 𝑤 ∈ SAlg)
5048, 49jca 554 . . . . . . . 8 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ 𝑤 ∈ SAlg) → (∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤) ∧ 𝑤 ∈ SAlg))
51503ad2antr1 1226 . . . . . . 7 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → (∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤) ∧ 𝑤 ∈ SAlg))
52 3simpc 1060 . . . . . . . 8 ((𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤) → ( 𝑤 = 𝑋𝑋𝑤))
5352adantl 482 . . . . . . 7 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → ( 𝑤 = 𝑋𝑋𝑤))
54 rspa 2930 . . . . . . 7 ((∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤) ∧ 𝑤 ∈ SAlg) → (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
5551, 53, 54sylc 65 . . . . . 6 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → 𝑆𝑤)
5655adantll 750 . . . . 5 ((((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦)) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → 𝑆𝑤)
5756adantll 750 . . . 4 (((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → 𝑆𝑤)
5836, 37, 38, 39, 57issalgend 40556 . . 3 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → (SalGen‘𝑋) = 𝑆)
5958ex 450 . 2 (𝜑 → (((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦)) → (SalGen‘𝑋) = 𝑆))
6035, 59impbid 202 1 (𝜑 → ((SalGen‘𝑋) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574   cuni 4436  cfv 5888  SAlgcsalg 40528  SalGencsalgen 40532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-salg 40529  df-salgen 40533
This theorem is referenced by:  unisalgen2  40572
  Copyright terms: Public domain W3C validator