Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenss Structured version   Visualization version   GIF version

Theorem salgenss 40554
Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 40562, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgenss.x (𝜑𝑋𝑉)
salgenss.g 𝐺 = (SalGen‘𝑋)
salgenss.s (𝜑𝑆 ∈ SAlg)
salgenss.i (𝜑𝑋𝑆)
salgenss.u (𝜑 𝑆 = 𝑋)
Assertion
Ref Expression
salgenss (𝜑𝐺𝑆)

Proof of Theorem salgenss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 salgenss.g . . . 4 𝐺 = (SalGen‘𝑋)
21a1i 11 . . 3 (𝜑𝐺 = (SalGen‘𝑋))
3 salgenss.x . . . 4 (𝜑𝑋𝑉)
4 salgenval 40541 . . . 4 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
53, 4syl 17 . . 3 (𝜑 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
62, 5eqtrd 2656 . 2 (𝜑𝐺 = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
7 salgenss.s . . . . 5 (𝜑𝑆 ∈ SAlg)
8 salgenss.u . . . . . 6 (𝜑 𝑆 = 𝑋)
9 salgenss.i . . . . . 6 (𝜑𝑋𝑆)
108, 9jca 554 . . . . 5 (𝜑 → ( 𝑆 = 𝑋𝑋𝑆))
117, 10jca 554 . . . 4 (𝜑 → (𝑆 ∈ SAlg ∧ ( 𝑆 = 𝑋𝑋𝑆)))
12 unieq 4444 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
1312eqeq1d 2624 . . . . . 6 (𝑠 = 𝑆 → ( 𝑠 = 𝑋 𝑆 = 𝑋))
14 sseq2 3627 . . . . . 6 (𝑠 = 𝑆 → (𝑋𝑠𝑋𝑆))
1513, 14anbi12d 747 . . . . 5 (𝑠 = 𝑆 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑆 = 𝑋𝑋𝑆)))
1615elrab 3363 . . . 4 (𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑆 ∈ SAlg ∧ ( 𝑆 = 𝑋𝑋𝑆)))
1711, 16sylibr 224 . . 3 (𝜑𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
18 intss1 4492 . . 3 (𝑆 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ 𝑆)
1917, 18syl 17 . 2 (𝜑 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ 𝑆)
206, 19eqsstrd 3639 1 (𝜑𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  wss 3574   cuni 4436   cint 4475  cfv 5888  SAlgcsalg 40528  SalGencsalgen 40532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-salg 40529  df-salgen 40533
This theorem is referenced by:  issalgend  40556  dfsalgen2  40559  borelmbl  40850  smfpimbor1lem2  41006
  Copyright terms: Public domain W3C validator