MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin2 Structured version   Visualization version   GIF version

Theorem difin2 3890
Description: Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
difin2 (𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))

Proof of Theorem difin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . . 5 (𝐴𝐶 → (𝑥𝐴𝑥𝐶))
21pm4.71d 666 . . . 4 (𝐴𝐶 → (𝑥𝐴 ↔ (𝑥𝐴𝑥𝐶)))
32anbi1d 741 . . 3 (𝐴𝐶 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵)))
4 eldif 3584 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 elin 3796 . . . 4 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ (𝑥 ∈ (𝐶𝐵) ∧ 𝑥𝐴))
6 eldif 3584 . . . . 5 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
76anbi1i 731 . . . 4 ((𝑥 ∈ (𝐶𝐵) ∧ 𝑥𝐴) ↔ ((𝑥𝐶 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐴))
8 ancom 466 . . . . 5 (((𝑥𝐶 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐴) ↔ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
9 anass 681 . . . . 5 (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ↔ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
108, 9bitr4i 267 . . . 4 (((𝑥𝐶 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐴) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵))
115, 7, 103bitri 286 . . 3 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵))
123, 4, 113bitr4g 303 . 2 (𝐴𝐶 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥 ∈ ((𝐶𝐵) ∩ 𝐴)))
1312eqrdv 2620 1 (𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  cdif 3571  cin 3573  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588
This theorem is referenced by:  gsumdifsnd  18360  issubdrg  18805  restcld  20976  limcnlp  23642  difelsiga  30196  sigapildsyslem  30224  ldgenpisyslem1  30226  difelcarsg2  30375  ballotlemfp1  30553  asindmre  33495  caragendifcl  40728  gsumdifsndf  42144
  Copyright terms: Public domain W3C validator