Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfp1 Structured version   Visualization version   GIF version

Theorem ballotlemfp1 30553
Description: If the 𝐽 th ballot is for A, (𝐹𝐶) goes up 1. If the 𝐽 th ballot is for B, (𝐹𝐶) goes down 1. (Contributed by Thierry Arnoux, 24-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotlemfp1.c (𝜑𝐶𝑂)
ballotlemfp1.j (𝜑𝐽 ∈ ℕ)
Assertion
Ref Expression
ballotlemfp1 (𝜑 → ((¬ 𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) − 1)) ∧ (𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) + 1))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖   𝑖,𝐽   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑐)   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfp1
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . . . . 6 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . . . . 6 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 ballotlemfp1.c . . . . . 6 (𝜑𝐶𝑂)
7 ballotlemfp1.j . . . . . . 7 (𝜑𝐽 ∈ ℕ)
87nnzd 11481 . . . . . 6 (𝜑𝐽 ∈ ℤ)
91, 2, 3, 4, 5, 6, 8ballotlemfval 30551 . . . . 5 (𝜑 → ((𝐹𝐶)‘𝐽) = ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))))
109adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐽𝐶) → ((𝐹𝐶)‘𝐽) = ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))))
11 fzfi 12771 . . . . . . . . . 10 (1...(𝐽 − 1)) ∈ Fin
12 inss1 3833 . . . . . . . . . 10 ((1...(𝐽 − 1)) ∩ 𝐶) ⊆ (1...(𝐽 − 1))
13 ssfi 8180 . . . . . . . . . 10 (((1...(𝐽 − 1)) ∈ Fin ∧ ((1...(𝐽 − 1)) ∩ 𝐶) ⊆ (1...(𝐽 − 1))) → ((1...(𝐽 − 1)) ∩ 𝐶) ∈ Fin)
1411, 12, 13mp2an 708 . . . . . . . . 9 ((1...(𝐽 − 1)) ∩ 𝐶) ∈ Fin
15 hashcl 13147 . . . . . . . . 9 (((1...(𝐽 − 1)) ∩ 𝐶) ∈ Fin → (#‘((1...(𝐽 − 1)) ∩ 𝐶)) ∈ ℕ0)
1614, 15ax-mp 5 . . . . . . . 8 (#‘((1...(𝐽 − 1)) ∩ 𝐶)) ∈ ℕ0
1716nn0cni 11304 . . . . . . 7 (#‘((1...(𝐽 − 1)) ∩ 𝐶)) ∈ ℂ
1817a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘((1...(𝐽 − 1)) ∩ 𝐶)) ∈ ℂ)
19 diffi 8192 . . . . . . . . . 10 ((1...(𝐽 − 1)) ∈ Fin → ((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin)
2011, 19ax-mp 5 . . . . . . . . 9 ((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin
21 hashcl 13147 . . . . . . . . 9 (((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin → (#‘((1...(𝐽 − 1)) ∖ 𝐶)) ∈ ℕ0)
2220, 21ax-mp 5 . . . . . . . 8 (#‘((1...(𝐽 − 1)) ∖ 𝐶)) ∈ ℕ0
2322nn0cni 11304 . . . . . . 7 (#‘((1...(𝐽 − 1)) ∖ 𝐶)) ∈ ℂ
2423a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘((1...(𝐽 − 1)) ∖ 𝐶)) ∈ ℂ)
25 1cnd 10056 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → 1 ∈ ℂ)
2618, 24, 25subsub4d 10423 . . . . 5 ((𝜑 ∧ ¬ 𝐽𝐶) → (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))) − 1) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − ((#‘((1...(𝐽 − 1)) ∖ 𝐶)) + 1)))
27 1zzd 11408 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
288, 27zsubcld 11487 . . . . . . . 8 (𝜑 → (𝐽 − 1) ∈ ℤ)
291, 2, 3, 4, 5, 6, 28ballotlemfval 30551 . . . . . . 7 (𝜑 → ((𝐹𝐶)‘(𝐽 − 1)) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))))
3029adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → ((𝐹𝐶)‘(𝐽 − 1)) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))))
3130oveq1d 6665 . . . . 5 ((𝜑 ∧ ¬ 𝐽𝐶) → (((𝐹𝐶)‘(𝐽 − 1)) − 1) = (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))) − 1))
32 elnnuz 11724 . . . . . . . . . . 11 (𝐽 ∈ ℕ ↔ 𝐽 ∈ (ℤ‘1))
337, 32sylib 208 . . . . . . . . . 10 (𝜑𝐽 ∈ (ℤ‘1))
34 fzspl 29550 . . . . . . . . . . . 12 (𝐽 ∈ (ℤ‘1) → (1...𝐽) = ((1...(𝐽 − 1)) ∪ {𝐽}))
3534ineq1d 3813 . . . . . . . . . . 11 (𝐽 ∈ (ℤ‘1) → ((1...𝐽) ∩ 𝐶) = (((1...(𝐽 − 1)) ∪ {𝐽}) ∩ 𝐶))
36 indir 3875 . . . . . . . . . . 11 (((1...(𝐽 − 1)) ∪ {𝐽}) ∩ 𝐶) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶))
3735, 36syl6eq 2672 . . . . . . . . . 10 (𝐽 ∈ (ℤ‘1) → ((1...𝐽) ∩ 𝐶) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)))
3833, 37syl 17 . . . . . . . . 9 (𝜑 → ((1...𝐽) ∩ 𝐶) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)))
3938adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽𝐶) → ((1...𝐽) ∩ 𝐶) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)))
40 disjsn 4246 . . . . . . . . . . . 12 ((𝐶 ∩ {𝐽}) = ∅ ↔ ¬ 𝐽𝐶)
41 incom 3805 . . . . . . . . . . . . 13 (𝐶 ∩ {𝐽}) = ({𝐽} ∩ 𝐶)
4241eqeq1i 2627 . . . . . . . . . . . 12 ((𝐶 ∩ {𝐽}) = ∅ ↔ ({𝐽} ∩ 𝐶) = ∅)
4340, 42sylbb1 227 . . . . . . . . . . 11 𝐽𝐶 → ({𝐽} ∩ 𝐶) = ∅)
4443adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽𝐶) → ({𝐽} ∩ 𝐶) = ∅)
4544uneq2d 3767 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽𝐶) → (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ∅))
46 un0 3967 . . . . . . . . 9 (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ∅) = ((1...(𝐽 − 1)) ∩ 𝐶)
4745, 46syl6eq 2672 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽𝐶) → (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)) = ((1...(𝐽 − 1)) ∩ 𝐶))
4839, 47eqtrd 2656 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽𝐶) → ((1...𝐽) ∩ 𝐶) = ((1...(𝐽 − 1)) ∩ 𝐶))
4948fveq2d 6195 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘((1...𝐽) ∩ 𝐶)) = (#‘((1...(𝐽 − 1)) ∩ 𝐶)))
5034difeq1d 3727 . . . . . . . . . . 11 (𝐽 ∈ (ℤ‘1) → ((1...𝐽) ∖ 𝐶) = (((1...(𝐽 − 1)) ∪ {𝐽}) ∖ 𝐶))
51 difundir 3880 . . . . . . . . . . 11 (((1...(𝐽 − 1)) ∪ {𝐽}) ∖ 𝐶) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶))
5250, 51syl6eq 2672 . . . . . . . . . 10 (𝐽 ∈ (ℤ‘1) → ((1...𝐽) ∖ 𝐶) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶)))
5333, 52syl 17 . . . . . . . . 9 (𝜑 → ((1...𝐽) ∖ 𝐶) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶)))
54 disj3 4021 . . . . . . . . . . . 12 (({𝐽} ∩ 𝐶) = ∅ ↔ {𝐽} = ({𝐽} ∖ 𝐶))
5543, 54sylib 208 . . . . . . . . . . 11 𝐽𝐶 → {𝐽} = ({𝐽} ∖ 𝐶))
5655eqcomd 2628 . . . . . . . . . 10 𝐽𝐶 → ({𝐽} ∖ 𝐶) = {𝐽})
5756uneq2d 3767 . . . . . . . . 9 𝐽𝐶 → (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶)) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ {𝐽}))
5853, 57sylan9eq 2676 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽𝐶) → ((1...𝐽) ∖ 𝐶) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ {𝐽}))
5958fveq2d 6195 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘((1...𝐽) ∖ 𝐶)) = (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ {𝐽})))
608adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽𝐶) → 𝐽 ∈ ℤ)
61 uzid 11702 . . . . . . . . . . . 12 (𝐽 ∈ ℤ → 𝐽 ∈ (ℤ𝐽))
62 uznfz 12423 . . . . . . . . . . . 12 (𝐽 ∈ (ℤ𝐽) → ¬ 𝐽 ∈ (1...(𝐽 − 1)))
638, 61, 623syl 18 . . . . . . . . . . 11 (𝜑 → ¬ 𝐽 ∈ (1...(𝐽 − 1)))
6463adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽𝐶) → ¬ 𝐽 ∈ (1...(𝐽 − 1)))
65 difss 3737 . . . . . . . . . . 11 ((1...(𝐽 − 1)) ∖ 𝐶) ⊆ (1...(𝐽 − 1))
6665sseli 3599 . . . . . . . . . 10 (𝐽 ∈ ((1...(𝐽 − 1)) ∖ 𝐶) → 𝐽 ∈ (1...(𝐽 − 1)))
6764, 66nsyl 135 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽𝐶) → ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∖ 𝐶))
68 ssfi 8180 . . . . . . . . . 10 (((1...(𝐽 − 1)) ∈ Fin ∧ ((1...(𝐽 − 1)) ∖ 𝐶) ⊆ (1...(𝐽 − 1))) → ((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin)
6911, 65, 68mp2an 708 . . . . . . . . 9 ((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin
7067, 69jctil 560 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽𝐶) → (((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin ∧ ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∖ 𝐶)))
71 hashunsng 13181 . . . . . . . 8 (𝐽 ∈ ℤ → ((((1...(𝐽 − 1)) ∖ 𝐶) ∈ Fin ∧ ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∖ 𝐶)) → (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ {𝐽})) = ((#‘((1...(𝐽 − 1)) ∖ 𝐶)) + 1)))
7260, 70, 71sylc 65 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ {𝐽})) = ((#‘((1...(𝐽 − 1)) ∖ 𝐶)) + 1))
7359, 72eqtrd 2656 . . . . . 6 ((𝜑 ∧ ¬ 𝐽𝐶) → (#‘((1...𝐽) ∖ 𝐶)) = ((#‘((1...(𝐽 − 1)) ∖ 𝐶)) + 1))
7449, 73oveq12d 6668 . . . . 5 ((𝜑 ∧ ¬ 𝐽𝐶) → ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − ((#‘((1...(𝐽 − 1)) ∖ 𝐶)) + 1)))
7526, 31, 743eqtr4rd 2667 . . . 4 ((𝜑 ∧ ¬ 𝐽𝐶) → ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) = (((𝐹𝐶)‘(𝐽 − 1)) − 1))
7610, 75eqtrd 2656 . . 3 ((𝜑 ∧ ¬ 𝐽𝐶) → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) − 1))
7776ex 450 . 2 (𝜑 → (¬ 𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) − 1)))
789adantr 481 . . . 4 ((𝜑𝐽𝐶) → ((𝐹𝐶)‘𝐽) = ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))))
7917a1i 11 . . . . . 6 ((𝜑𝐽𝐶) → (#‘((1...(𝐽 − 1)) ∩ 𝐶)) ∈ ℂ)
80 1cnd 10056 . . . . . 6 ((𝜑𝐽𝐶) → 1 ∈ ℂ)
8123a1i 11 . . . . . 6 ((𝜑𝐽𝐶) → (#‘((1...(𝐽 − 1)) ∖ 𝐶)) ∈ ℂ)
8279, 80, 81addsubd 10413 . . . . 5 ((𝜑𝐽𝐶) → (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) + 1) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))) = (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))) + 1))
8338fveq2d 6195 . . . . . . . 8 (𝜑 → (#‘((1...𝐽) ∩ 𝐶)) = (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶))))
8483adantr 481 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘((1...𝐽) ∩ 𝐶)) = (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶))))
85 snssi 4339 . . . . . . . . . . 11 (𝐽𝐶 → {𝐽} ⊆ 𝐶)
86 df-ss 3588 . . . . . . . . . . 11 ({𝐽} ⊆ 𝐶 ↔ ({𝐽} ∩ 𝐶) = {𝐽})
8785, 86sylib 208 . . . . . . . . . 10 (𝐽𝐶 → ({𝐽} ∩ 𝐶) = {𝐽})
8887uneq2d 3767 . . . . . . . . 9 (𝐽𝐶 → (((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶)) = (((1...(𝐽 − 1)) ∩ 𝐶) ∪ {𝐽}))
8988fveq2d 6195 . . . . . . . 8 (𝐽𝐶 → (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶))) = (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ {𝐽})))
9089adantl 482 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ ({𝐽} ∩ 𝐶))) = (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ {𝐽})))
91 simpr 477 . . . . . . . 8 ((𝜑𝐽𝐶) → 𝐽𝐶)
928adantr 481 . . . . . . . . . . 11 ((𝜑𝐽𝐶) → 𝐽 ∈ ℤ)
9392, 61, 623syl 18 . . . . . . . . . 10 ((𝜑𝐽𝐶) → ¬ 𝐽 ∈ (1...(𝐽 − 1)))
9412sseli 3599 . . . . . . . . . 10 (𝐽 ∈ ((1...(𝐽 − 1)) ∩ 𝐶) → 𝐽 ∈ (1...(𝐽 − 1)))
9593, 94nsyl 135 . . . . . . . . 9 ((𝜑𝐽𝐶) → ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∩ 𝐶))
9695, 14jctil 560 . . . . . . . 8 ((𝜑𝐽𝐶) → (((1...(𝐽 − 1)) ∩ 𝐶) ∈ Fin ∧ ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∩ 𝐶)))
97 hashunsng 13181 . . . . . . . 8 (𝐽𝐶 → ((((1...(𝐽 − 1)) ∩ 𝐶) ∈ Fin ∧ ¬ 𝐽 ∈ ((1...(𝐽 − 1)) ∩ 𝐶)) → (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ {𝐽})) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) + 1)))
9891, 96, 97sylc 65 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘(((1...(𝐽 − 1)) ∩ 𝐶) ∪ {𝐽})) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) + 1))
9984, 90, 983eqtrd 2660 . . . . . 6 ((𝜑𝐽𝐶) → (#‘((1...𝐽) ∩ 𝐶)) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) + 1))
10053fveq2d 6195 . . . . . . . 8 (𝜑 → (#‘((1...𝐽) ∖ 𝐶)) = (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶))))
101100adantr 481 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘((1...𝐽) ∖ 𝐶)) = (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶))))
102 difin2 3890 . . . . . . . . . . . 12 ({𝐽} ⊆ 𝐶 → ({𝐽} ∖ 𝐶) = ((𝐶𝐶) ∩ {𝐽}))
103 difid 3948 . . . . . . . . . . . . . 14 (𝐶𝐶) = ∅
104103ineq1i 3810 . . . . . . . . . . . . 13 ((𝐶𝐶) ∩ {𝐽}) = (∅ ∩ {𝐽})
105 0in 3969 . . . . . . . . . . . . 13 (∅ ∩ {𝐽}) = ∅
106104, 105eqtri 2644 . . . . . . . . . . . 12 ((𝐶𝐶) ∩ {𝐽}) = ∅
107102, 106syl6eq 2672 . . . . . . . . . . 11 ({𝐽} ⊆ 𝐶 → ({𝐽} ∖ 𝐶) = ∅)
10885, 107syl 17 . . . . . . . . . 10 (𝐽𝐶 → ({𝐽} ∖ 𝐶) = ∅)
109108uneq2d 3767 . . . . . . . . 9 (𝐽𝐶 → (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶)) = (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅))
110109fveq2d 6195 . . . . . . . 8 (𝐽𝐶 → (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶))) = (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅)))
111110adantl 482 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ({𝐽} ∖ 𝐶))) = (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅)))
112 un0 3967 . . . . . . . . 9 (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅) = ((1...(𝐽 − 1)) ∖ 𝐶)
113112a1i 11 . . . . . . . 8 ((𝜑𝐽𝐶) → (((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅) = ((1...(𝐽 − 1)) ∖ 𝐶))
114113fveq2d 6195 . . . . . . 7 ((𝜑𝐽𝐶) → (#‘(((1...(𝐽 − 1)) ∖ 𝐶) ∪ ∅)) = (#‘((1...(𝐽 − 1)) ∖ 𝐶)))
115101, 111, 1143eqtrd 2660 . . . . . 6 ((𝜑𝐽𝐶) → (#‘((1...𝐽) ∖ 𝐶)) = (#‘((1...(𝐽 − 1)) ∖ 𝐶)))
11699, 115oveq12d 6668 . . . . 5 ((𝜑𝐽𝐶) → ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) = (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) + 1) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))))
11729adantr 481 . . . . . 6 ((𝜑𝐽𝐶) → ((𝐹𝐶)‘(𝐽 − 1)) = ((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))))
118117oveq1d 6665 . . . . 5 ((𝜑𝐽𝐶) → (((𝐹𝐶)‘(𝐽 − 1)) + 1) = (((#‘((1...(𝐽 − 1)) ∩ 𝐶)) − (#‘((1...(𝐽 − 1)) ∖ 𝐶))) + 1))
11982, 116, 1183eqtr4d 2666 . . . 4 ((𝜑𝐽𝐶) → ((#‘((1...𝐽) ∩ 𝐶)) − (#‘((1...𝐽) ∖ 𝐶))) = (((𝐹𝐶)‘(𝐽 − 1)) + 1))
12078, 119eqtrd 2656 . . 3 ((𝜑𝐽𝐶) → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) + 1))
121120ex 450 . 2 (𝜑 → (𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) + 1)))
12277, 121jca 554 1 (𝜑 → ((¬ 𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) − 1)) ∧ (𝐽𝐶 → ((𝐹𝐶)‘𝐽) = (((𝐹𝐶)‘(𝐽 − 1)) + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  cmpt 4729  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  1c1 9937   + caddc 9939  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlemfc0  30554  ballotlemfcc  30555  ballotlem4  30560  ballotlemi1  30564  ballotlemii  30565  ballotlemic  30568  ballotlem1c  30569
  Copyright terms: Public domain W3C validator