| Step | Hyp | Ref
| Expression |
| 1 | | limccl.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 2 | | limccl.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 3 | | limccl.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 4 | | ellimc2.k |
. . . 4
⊢ 𝐾 =
(TopOpen‘ℂfld) |
| 5 | 1, 2, 3, 4 | ellimc2 23641 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))) |
| 6 | 4 | cnfldtop 22587 |
. . . . . . . . . 10
⊢ 𝐾 ∈ Top |
| 7 | 2 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ⊆ ℂ) |
| 8 | 7 | ssdifssd 3748 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
| 9 | 4 | cnfldtopon 22586 |
. . . . . . . . . . . 12
⊢ 𝐾 ∈
(TopOn‘ℂ) |
| 10 | 9 | toponunii 20721 |
. . . . . . . . . . 11
⊢ ℂ =
∪ 𝐾 |
| 11 | 10 | clscld 20851 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Top ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ) → ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾)) |
| 12 | 6, 8, 11 | sylancr 695 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾)) |
| 13 | 10 | cldopn 20835 |
. . . . . . . . 9
⊢
(((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ∈ (Clsd‘𝐾) → (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾) |
| 14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾) |
| 15 | | limcnlp.n |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
| 16 | 10 | islp 20944 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
| 17 | 6, 2, 16 | sylancr 695 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
| 18 | 15, 17 | mtbid 314 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) |
| 19 | 3, 18 | eldifd 3585 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
| 20 | 19 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
| 21 | | difin2 3890 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ {𝐵}) ⊆ ℂ → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) |
| 22 | 8, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) |
| 23 | 10 | sscls 20860 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Top ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) |
| 24 | 6, 8, 23 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) |
| 25 | | ssdif0 3942 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ {𝐵}) ⊆ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) ↔ ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ∅) |
| 26 | 24, 25 | sylib 208 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐴 ∖ {𝐵}) ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) = ∅) |
| 27 | 22, 26 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})) = ∅) |
| 28 | 27 | imaeq2d 5466 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ∅)) |
| 29 | | ima0 5481 |
. . . . . . . . . 10
⊢ (𝐹 “ ∅) =
∅ |
| 30 | 28, 29 | syl6eq 2672 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) = ∅) |
| 31 | | 0ss 3972 |
. . . . . . . . 9
⊢ ∅
⊆ 𝑢 |
| 32 | 30, 31 | syl6eqss 3655 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) |
| 33 | | eleq2 2690 |
. . . . . . . . . 10
⊢ (𝑣 = (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝐵 ∈ 𝑣 ↔ 𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))) |
| 34 | | ineq1 3807 |
. . . . . . . . . . . 12
⊢ (𝑣 = (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝑣 ∩ (𝐴 ∖ {𝐵})) = ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) |
| 35 | 34 | imaeq2d 5466 |
. . . . . . . . . . 11
⊢ (𝑣 = (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵})))) |
| 36 | 35 | sseq1d 3632 |
. . . . . . . . . 10
⊢ (𝑣 = (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) |
| 37 | 33, 36 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑣 = (ℂ ∖
((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) → ((𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∧ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) |
| 38 | 37 | rspcev 3309 |
. . . . . . . 8
⊢
(((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∈ 𝐾 ∧ (𝐵 ∈ (ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∧ (𝐹 “ ((ℂ ∖ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) |
| 39 | 14, 20, 32, 38 | syl12anc 1324 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) |
| 40 | 39 | a1d 25 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ 𝑢 → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) |
| 41 | 40 | ralrimivw 2967 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) |
| 42 | 41 | ex 450 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℂ → ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))) |
| 43 | 42 | pm4.71d 666 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℂ ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑣 ∈ 𝐾 (𝐵 ∈ 𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))) |
| 44 | 5, 43 | bitr4d 271 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑥 ∈ ℂ)) |
| 45 | 44 | eqrdv 2620 |
1
⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) |