Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumdifsndf Structured version   Visualization version   GIF version

Theorem gsumdifsndf 42144
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 4-Sep-2019.)
Hypotheses
Ref Expression
gsumdifsndf.k 𝑘𝑌
gsumdifsndf.n 𝑘𝜑
gsumdifsndf.b 𝐵 = (Base‘𝐺)
gsumdifsndf.p + = (+g𝐺)
gsumdifsndf.g (𝜑𝐺 ∈ CMnd)
gsumdifsndf.a (𝜑𝐴𝑊)
gsumdifsndf.f (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
gsumdifsndf.e ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumdifsndf.m (𝜑𝑀𝐴)
gsumdifsndf.y (𝜑𝑌𝐵)
gsumdifsndf.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
Assertion
Ref Expression
gsumdifsndf (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   + (𝑘)   𝑊(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem gsumdifsndf
StepHypRef Expression
1 gsumdifsndf.n . . 3 𝑘𝜑
2 gsumdifsndf.b . . 3 𝐵 = (Base‘𝐺)
3 eqid 2622 . . 3 (0g𝐺) = (0g𝐺)
4 gsumdifsndf.p . . 3 + = (+g𝐺)
5 gsumdifsndf.g . . 3 (𝜑𝐺 ∈ CMnd)
6 gsumdifsndf.a . . 3 (𝜑𝐴𝑊)
7 gsumdifsndf.e . . 3 ((𝜑𝑘𝐴) → 𝑋𝐵)
8 gsumdifsndf.f . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp (0g𝐺))
9 difid 3948 . . . 4 ({𝑀} ∖ {𝑀}) = ∅
10 gsumdifsndf.m . . . . . 6 (𝜑𝑀𝐴)
1110snssd 4340 . . . . 5 (𝜑 → {𝑀} ⊆ 𝐴)
12 difin2 3890 . . . . 5 ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
1311, 12syl 17 . . . 4 (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀}))
149, 13syl5reqr 2671 . . 3 (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅)
15 difsnid 4341 . . . . 5 (𝑀𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
1610, 15syl 17 . . . 4 (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴)
1716eqcomd 2628 . . 3 (𝜑𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀}))
181, 2, 3, 4, 5, 6, 7, 8, 14, 17gsumsplit2f 42143 . 2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
19 cmnmnd 18208 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
205, 19syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
21 gsumdifsndf.y . . . 4 (𝜑𝑌𝐵)
22 gsumdifsndf.s . . . 4 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
23 gsumdifsndf.k . . . 4 𝑘𝑌
242, 20, 10, 21, 22, 1, 23gsumsnfd 18351 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
2524oveq2d 6666 . 2 (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
2618, 25eqtrd 2656 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650   finSupp cfsupp 8275  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator