| Step | Hyp | Ref
| Expression |
| 1 | | difss 3737 |
. . 3
⊢ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) ⊆ (𝐶 × 𝐷) |
| 2 | | relxp 5227 |
. . 3
⊢ Rel
(𝐶 × 𝐷) |
| 3 | | relss 5206 |
. . 3
⊢ (((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) ⊆ (𝐶 × 𝐷) → (Rel (𝐶 × 𝐷) → Rel ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)))) |
| 4 | 1, 2, 3 | mp2 9 |
. 2
⊢ Rel
((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) |
| 5 | | relxp 5227 |
. . 3
⊢ Rel
((𝐶 ∖ 𝐴) × 𝐷) |
| 6 | | relxp 5227 |
. . 3
⊢ Rel
(𝐶 × (𝐷 ∖ 𝐵)) |
| 7 | | relun 5235 |
. . 3
⊢ (Rel
(((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) ↔ (Rel ((𝐶 ∖ 𝐴) × 𝐷) ∧ Rel (𝐶 × (𝐷 ∖ 𝐵)))) |
| 8 | 5, 6, 7 | mpbir2an 955 |
. 2
⊢ Rel
(((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) |
| 9 | | ianor 509 |
. . . . . 6
⊢ (¬
(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐵)) |
| 10 | 9 | anbi2i 730 |
. . . . 5
⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐵))) |
| 11 | | andi 911 |
. . . . 5
⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐵)) ↔ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴) ∨ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ 𝐵))) |
| 12 | 10, 11 | bitri 264 |
. . . 4
⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴) ∨ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ 𝐵))) |
| 13 | | opelxp 5146 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) |
| 14 | | opelxp 5146 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 15 | 14 | notbii 310 |
. . . . 5
⊢ (¬
〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 16 | 13, 15 | anbi12i 733 |
. . . 4
⊢
((〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ∧ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 17 | | opelxp 5146 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐶 ∖ 𝐴) × 𝐷) ↔ (𝑥 ∈ (𝐶 ∖ 𝐴) ∧ 𝑦 ∈ 𝐷)) |
| 18 | | eldif 3584 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 19 | 18 | anbi1i 731 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐶 ∖ 𝐴) ∧ 𝑦 ∈ 𝐷) ↔ ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐷)) |
| 20 | | an32 839 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐷) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴)) |
| 21 | 19, 20 | bitri 264 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐶 ∖ 𝐴) ∧ 𝑦 ∈ 𝐷) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴)) |
| 22 | 17, 21 | bitri 264 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐶 ∖ 𝐴) × 𝐷) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴)) |
| 23 | | eldif 3584 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐷 ∖ 𝐵) ↔ (𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ 𝐵)) |
| 24 | 23 | anbi2i 730 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ (𝐷 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐶 ∧ (𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ 𝐵))) |
| 25 | | opelxp 5146 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 × (𝐷 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ (𝐷 ∖ 𝐵))) |
| 26 | | anass 681 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ (𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ 𝐵))) |
| 27 | 24, 25, 26 | 3bitr4i 292 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 × (𝐷 ∖ 𝐵)) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ 𝐵)) |
| 28 | 22, 27 | orbi12i 543 |
. . . 4
⊢
((〈𝑥, 𝑦〉 ∈ ((𝐶 ∖ 𝐴) × 𝐷) ∨ 〈𝑥, 𝑦〉 ∈ (𝐶 × (𝐷 ∖ 𝐵))) ↔ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴) ∨ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ 𝐵))) |
| 29 | 12, 16, 28 | 3bitr4i 292 |
. . 3
⊢
((〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ∧ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ ((𝐶 ∖ 𝐴) × 𝐷) ∨ 〈𝑥, 𝑦〉 ∈ (𝐶 × (𝐷 ∖ 𝐵)))) |
| 30 | | eldif 3584 |
. . 3
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ∧ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) |
| 31 | | elun 3753 |
. . 3
⊢
(〈𝑥, 𝑦〉 ∈ (((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) ↔ (〈𝑥, 𝑦〉 ∈ ((𝐶 ∖ 𝐴) × 𝐷) ∨ 〈𝑥, 𝑦〉 ∈ (𝐶 × (𝐷 ∖ 𝐵)))) |
| 32 | 29, 30, 31 | 3bitr4i 292 |
. 2
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) ↔ 〈𝑥, 𝑦〉 ∈ (((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵)))) |
| 33 | 4, 8, 32 | eqrelriiv 5214 |
1
⊢ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) = (((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) |