MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem4 Structured version   Visualization version   GIF version

Theorem evlslem4 19508
Description: The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
evlslem4.b 𝐵 = (Base‘𝑅)
evlslem4.z 0 = (0g𝑅)
evlslem4.t · = (.r𝑅)
evlslem4.r (𝜑𝑅 ∈ Ring)
evlslem4.x ((𝜑𝑥𝐼) → 𝑋𝐵)
evlslem4.y ((𝜑𝑦𝐽) → 𝑌𝐵)
evlslem4.i (𝜑𝐼𝑉)
evlslem4.j (𝜑𝐽𝑊)
Assertion
Ref Expression
evlslem4 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
Distinct variable groups:   𝑥,𝑦,𝐼   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑦,𝑋   𝑥,𝐵,𝑦   𝑥, · ,𝑦   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥)   𝑌(𝑦)   0 (𝑥,𝑦)

Proof of Theorem evlslem4
Dummy variables 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . . . . 6 𝑖(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
2 nfcv 2764 . . . . . 6 𝑗(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
3 nffvmpt1 6199 . . . . . . 7 𝑥((𝑥𝐼𝑋)‘𝑖)
4 nfcv 2764 . . . . . . 7 𝑥 ·
5 nfcv 2764 . . . . . . 7 𝑥((𝑦𝐽𝑌)‘𝑗)
63, 4, 5nfov 6676 . . . . . 6 𝑥(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
7 nfcv 2764 . . . . . . 7 𝑦((𝑥𝐼𝑋)‘𝑖)
8 nfcv 2764 . . . . . . 7 𝑦 ·
9 nffvmpt1 6199 . . . . . . 7 𝑦((𝑦𝐽𝑌)‘𝑗)
107, 8, 9nfov 6676 . . . . . 6 𝑦(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
11 fveq2 6191 . . . . . . 7 (𝑥 = 𝑖 → ((𝑥𝐼𝑋)‘𝑥) = ((𝑥𝐼𝑋)‘𝑖))
12 fveq2 6191 . . . . . . 7 (𝑦 = 𝑗 → ((𝑦𝐽𝑌)‘𝑦) = ((𝑦𝐽𝑌)‘𝑗))
1311, 12oveqan12d 6669 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
141, 2, 6, 10, 13cbvmpt2 6734 . . . . 5 (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
15 vex 3203 . . . . . . . 8 𝑖 ∈ V
16 vex 3203 . . . . . . . 8 𝑗 ∈ V
1715, 16eqop2 7209 . . . . . . 7 (𝑧 = ⟨𝑖, 𝑗⟩ ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) = 𝑖 ∧ (2nd𝑧) = 𝑗)))
18 fveq2 6191 . . . . . . . . 9 ((1st𝑧) = 𝑖 → ((𝑥𝐼𝑋)‘(1st𝑧)) = ((𝑥𝐼𝑋)‘𝑖))
19 fveq2 6191 . . . . . . . . 9 ((2nd𝑧) = 𝑗 → ((𝑦𝐽𝑌)‘(2nd𝑧)) = ((𝑦𝐽𝑌)‘𝑗))
2018, 19oveqan12d 6669 . . . . . . . 8 (((1st𝑧) = 𝑖 ∧ (2nd𝑧) = 𝑗) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
2120adantl 482 . . . . . . 7 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) = 𝑖 ∧ (2nd𝑧) = 𝑗)) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
2217, 21sylbi 207 . . . . . 6 (𝑧 = ⟨𝑖, 𝑗⟩ → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
2322mpt2mpt 6752 . . . . 5 (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) = (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
2414, 23eqtr4i 2647 . . . 4 (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))))
25 simp2 1062 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑥𝐼)
26 evlslem4.x . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑋𝐵)
27263adant3 1081 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑋𝐵)
28 eqid 2622 . . . . . . . 8 (𝑥𝐼𝑋) = (𝑥𝐼𝑋)
2928fvmpt2 6291 . . . . . . 7 ((𝑥𝐼𝑋𝐵) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
3025, 27, 29syl2anc 693 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
31 simp3 1063 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑦𝐽)
32 evlslem4.y . . . . . . . 8 ((𝜑𝑦𝐽) → 𝑌𝐵)
33323adant2 1080 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑌𝐵)
34 eqid 2622 . . . . . . . 8 (𝑦𝐽𝑌) = (𝑦𝐽𝑌)
3534fvmpt2 6291 . . . . . . 7 ((𝑦𝐽𝑌𝐵) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
3631, 33, 35syl2anc 693 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
3730, 36oveq12d 6668 . . . . 5 ((𝜑𝑥𝐼𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
3837mpt2eq3dva 6719 . . . 4 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
3924, 38syl5reqr 2671 . . 3 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) = (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))))
4039oveq1d 6665 . 2 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) = ((𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) supp 0 ))
41 difxp 5558 . . . . . 6 ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) = (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))))
4241eleq2i 2693 . . . . 5 (𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) ↔ 𝑧 ∈ (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
43 elun 3753 . . . . 5 (𝑧 ∈ (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) ↔ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
4442, 43bitri 264 . . . 4 (𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) ↔ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
45 xp1st 7198 . . . . . . . 8 (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) → (1st𝑧) ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
4626, 28fmptd 6385 . . . . . . . . 9 (𝜑 → (𝑥𝐼𝑋):𝐼𝐵)
47 ssid 3624 . . . . . . . . . 10 ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 )
4847a1i 11 . . . . . . . . 9 (𝜑 → ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 ))
49 evlslem4.i . . . . . . . . 9 (𝜑𝐼𝑉)
50 evlslem4.z . . . . . . . . . . 11 0 = (0g𝑅)
51 fvex 6201 . . . . . . . . . . 11 (0g𝑅) ∈ V
5250, 51eqeltri 2697 . . . . . . . . . 10 0 ∈ V
5352a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
5446, 48, 49, 53suppssr 7326 . . . . . . . 8 ((𝜑 ∧ (1st𝑧) ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 ))) → ((𝑥𝐼𝑋)‘(1st𝑧)) = 0 )
5545, 54sylan2 491 . . . . . . 7 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ((𝑥𝐼𝑋)‘(1st𝑧)) = 0 )
5655oveq1d 6665 . . . . . 6 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))))
57 evlslem4.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
5857adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → 𝑅 ∈ Ring)
5932, 34fmptd 6385 . . . . . . . 8 (𝜑 → (𝑦𝐽𝑌):𝐽𝐵)
60 xp2nd 7199 . . . . . . . 8 (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) → (2nd𝑧) ∈ 𝐽)
61 ffvelrn 6357 . . . . . . . 8 (((𝑦𝐽𝑌):𝐽𝐵 ∧ (2nd𝑧) ∈ 𝐽) → ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵)
6259, 60, 61syl2an 494 . . . . . . 7 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵)
63 evlslem4.b . . . . . . . 8 𝐵 = (Base‘𝑅)
64 evlslem4.t . . . . . . . 8 · = (.r𝑅)
6563, 64, 50ringlz 18587 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵) → ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
6658, 62, 65syl2anc 693 . . . . . 6 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
6756, 66eqtrd 2656 . . . . 5 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
68 xp2nd 7199 . . . . . . . 8 (𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → (2nd𝑧) ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
69 ssid 3624 . . . . . . . . . 10 ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 )
7069a1i 11 . . . . . . . . 9 (𝜑 → ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 ))
71 evlslem4.j . . . . . . . . 9 (𝜑𝐽𝑊)
7259, 70, 71, 53suppssr 7326 . . . . . . . 8 ((𝜑 ∧ (2nd𝑧) ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → ((𝑦𝐽𝑌)‘(2nd𝑧)) = 0 )
7368, 72sylan2 491 . . . . . . 7 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → ((𝑦𝐽𝑌)‘(2nd𝑧)) = 0 )
7473oveq2d 6666 . . . . . 6 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ))
7557adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → 𝑅 ∈ Ring)
76 xp1st 7198 . . . . . . . 8 (𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → (1st𝑧) ∈ 𝐼)
77 ffvelrn 6357 . . . . . . . 8 (((𝑥𝐼𝑋):𝐼𝐵 ∧ (1st𝑧) ∈ 𝐼) → ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵)
7846, 76, 77syl2an 494 . . . . . . 7 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵)
7963, 64, 50ringrz 18588 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵) → (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ) = 0 )
8075, 78, 79syl2anc 693 . . . . . 6 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ) = 0 )
8174, 80eqtrd 2656 . . . . 5 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
8267, 81jaodan 826 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
8344, 82sylan2b 492 . . 3 ((𝜑𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
84 xpexg 6960 . . . 4 ((𝐼𝑉𝐽𝑊) → (𝐼 × 𝐽) ∈ V)
8549, 71, 84syl2anc 693 . . 3 (𝜑 → (𝐼 × 𝐽) ∈ V)
8683, 85suppss2 7329 . 2 (𝜑 → ((𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
8740, 86eqsstrd 3639 1 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  wss 3574  cop 4183  cmpt 4729   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167   supp csupp 7295  Basecbs 15857  .rcmulr 15942  0gc0g 16100  Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ring 18549
This theorem is referenced by:  evlslem2  19512
  Copyright terms: Public domain W3C validator