MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcld Structured version   Visualization version   GIF version

Theorem txcld 21406
Description: The product of two closed sets is closed in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
txcld ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)))

Proof of Theorem txcld
StepHypRef Expression
1 eqid 2622 . . . . 5 𝑅 = 𝑅
21cldss 20833 . . . 4 (𝐴 ∈ (Clsd‘𝑅) → 𝐴 𝑅)
3 eqid 2622 . . . . 5 𝑆 = 𝑆
43cldss 20833 . . . 4 (𝐵 ∈ (Clsd‘𝑆) → 𝐵 𝑆)
5 xpss12 5225 . . . 4 ((𝐴 𝑅𝐵 𝑆) → (𝐴 × 𝐵) ⊆ ( 𝑅 × 𝑆))
62, 4, 5syl2an 494 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ⊆ ( 𝑅 × 𝑆))
7 cldrcl 20830 . . . 4 (𝐴 ∈ (Clsd‘𝑅) → 𝑅 ∈ Top)
8 cldrcl 20830 . . . 4 (𝐵 ∈ (Clsd‘𝑆) → 𝑆 ∈ Top)
91, 3txuni 21395 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
107, 8, 9syl2an 494 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
116, 10sseqtrd 3641 . 2 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ⊆ (𝑅 ×t 𝑆))
12 difxp 5558 . . . 4 (( 𝑅 × 𝑆) ∖ (𝐴 × 𝐵)) = ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵)))
1310difeq1d 3727 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (( 𝑅 × 𝑆) ∖ (𝐴 × 𝐵)) = ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)))
1412, 13syl5eqr 2670 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵))) = ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)))
15 txtop 21372 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
167, 8, 15syl2an 494 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝑅 ×t 𝑆) ∈ Top)
177adantr 481 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑅 ∈ Top)
188adantl 482 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑆 ∈ Top)
191cldopn 20835 . . . . . 6 (𝐴 ∈ (Clsd‘𝑅) → ( 𝑅𝐴) ∈ 𝑅)
2019adantr 481 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑅𝐴) ∈ 𝑅)
213topopn 20711 . . . . . 6 (𝑆 ∈ Top → 𝑆𝑆)
2218, 21syl 17 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑆𝑆)
23 txopn 21405 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (( 𝑅𝐴) ∈ 𝑅 𝑆𝑆)) → (( 𝑅𝐴) × 𝑆) ∈ (𝑅 ×t 𝑆))
2417, 18, 20, 22, 23syl22anc 1327 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (( 𝑅𝐴) × 𝑆) ∈ (𝑅 ×t 𝑆))
251topopn 20711 . . . . . 6 (𝑅 ∈ Top → 𝑅𝑅)
2617, 25syl 17 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑅𝑅)
273cldopn 20835 . . . . . 6 (𝐵 ∈ (Clsd‘𝑆) → ( 𝑆𝐵) ∈ 𝑆)
2827adantl 482 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑆𝐵) ∈ 𝑆)
29 txopn 21405 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ ( 𝑅𝑅 ∧ ( 𝑆𝐵) ∈ 𝑆)) → ( 𝑅 × ( 𝑆𝐵)) ∈ (𝑅 ×t 𝑆))
3017, 18, 26, 28, 29syl22anc 1327 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑅 × ( 𝑆𝐵)) ∈ (𝑅 ×t 𝑆))
31 unopn 20708 . . . 4 (((𝑅 ×t 𝑆) ∈ Top ∧ (( 𝑅𝐴) × 𝑆) ∈ (𝑅 ×t 𝑆) ∧ ( 𝑅 × ( 𝑆𝐵)) ∈ (𝑅 ×t 𝑆)) → ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵))) ∈ (𝑅 ×t 𝑆))
3216, 24, 30, 31syl3anc 1326 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵))) ∈ (𝑅 ×t 𝑆))
3314, 32eqeltrrd 2702 . 2 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆))
34 eqid 2622 . . . 4 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
3534iscld 20831 . . 3 ((𝑅 ×t 𝑆) ∈ Top → ((𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)) ↔ ((𝐴 × 𝐵) ⊆ (𝑅 ×t 𝑆) ∧ ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆))))
3616, 35syl 17 . 2 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)) ↔ ((𝐴 × 𝐵) ⊆ (𝑅 ×t 𝑆) ∧ ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆))))
3711, 33, 36mpbir2and 957 1 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cdif 3571  cun 3572  wss 3574   cuni 4436   × cxp 5112  cfv 5888  (class class class)co 6650  Topctop 20698  Clsdccld 20820   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-tx 21365
This theorem is referenced by:  txcls  21407  cnmpt2pc  22727  sxbrsigalem3  30334
  Copyright terms: Public domain W3C validator