| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difxp | Structured version Visualization version Unicode version | ||
| Description: Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| difxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 3737 |
. . 3
| |
| 2 | relxp 5227 |
. . 3
| |
| 3 | relss 5206 |
. . 3
| |
| 4 | 1, 2, 3 | mp2 9 |
. 2
|
| 5 | relxp 5227 |
. . 3
| |
| 6 | relxp 5227 |
. . 3
| |
| 7 | relun 5235 |
. . 3
| |
| 8 | 5, 6, 7 | mpbir2an 955 |
. 2
|
| 9 | ianor 509 |
. . . . . 6
| |
| 10 | 9 | anbi2i 730 |
. . . . 5
|
| 11 | andi 911 |
. . . . 5
| |
| 12 | 10, 11 | bitri 264 |
. . . 4
|
| 13 | opelxp 5146 |
. . . . 5
| |
| 14 | opelxp 5146 |
. . . . . 6
| |
| 15 | 14 | notbii 310 |
. . . . 5
|
| 16 | 13, 15 | anbi12i 733 |
. . . 4
|
| 17 | opelxp 5146 |
. . . . . 6
| |
| 18 | eldif 3584 |
. . . . . . . 8
| |
| 19 | 18 | anbi1i 731 |
. . . . . . 7
|
| 20 | an32 839 |
. . . . . . 7
| |
| 21 | 19, 20 | bitri 264 |
. . . . . 6
|
| 22 | 17, 21 | bitri 264 |
. . . . 5
|
| 23 | eldif 3584 |
. . . . . . 7
| |
| 24 | 23 | anbi2i 730 |
. . . . . 6
|
| 25 | opelxp 5146 |
. . . . . 6
| |
| 26 | anass 681 |
. . . . . 6
| |
| 27 | 24, 25, 26 | 3bitr4i 292 |
. . . . 5
|
| 28 | 22, 27 | orbi12i 543 |
. . . 4
|
| 29 | 12, 16, 28 | 3bitr4i 292 |
. . 3
|
| 30 | eldif 3584 |
. . 3
| |
| 31 | elun 3753 |
. . 3
| |
| 32 | 29, 30, 31 | 3bitr4i 292 |
. 2
|
| 33 | 4, 8, 32 | eqrelriiv 5214 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: difxp1 5559 difxp2 5560 evlslem4 19508 txcld 21406 |
| Copyright terms: Public domain | W3C validator |