MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1 Structured version   Visualization version   GIF version

Theorem disjeq1 4627
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq1 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjeq1
StepHypRef Expression
1 eqimss2 3658 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 disjss1 4626 . . 3 (𝐵𝐴 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
4 eqimss 3657 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 disjss1 4626 . . 3 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
73, 6impbid 202 1 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wss 3574  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-rmo 2920  df-in 3581  df-ss 3588  df-disj 4621
This theorem is referenced by:  disjeq1d  4628  volfiniun  23315  disjrnmpt  29398  iundisj2cnt  29558  unelldsys  30221  sigapildsys  30225  ldgenpisyslem1  30226  rossros  30243  measvun  30272  pmeasmono  30386  pmeasadd  30387  meadjuni  40674
  Copyright terms: Public domain W3C validator