MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1 Structured version   Visualization version   Unicode version

Theorem disjeq1 4627
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq1  |-  ( A  =  B  ->  (Disj  x  e.  A  C  <-> Disj  x  e.  B  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem disjeq1
StepHypRef Expression
1 eqimss2 3658 . . 3  |-  ( A  =  B  ->  B  C_  A )
2 disjss1 4626 . . 3  |-  ( B 
C_  A  ->  (Disj  x  e.  A  C  -> Disj  x  e.  B  C ) )
31, 2syl 17 . 2  |-  ( A  =  B  ->  (Disj  x  e.  A  C  -> Disj  x  e.  B  C ) )
4 eqimss 3657 . . 3  |-  ( A  =  B  ->  A  C_  B )
5 disjss1 4626 . . 3  |-  ( A 
C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
64, 5syl 17 . 2  |-  ( A  =  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
73, 6impbid 202 1  |-  ( A  =  B  ->  (Disj  x  e.  A  C  <-> Disj  x  e.  B  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    C_ wss 3574  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-rmo 2920  df-in 3581  df-ss 3588  df-disj 4621
This theorem is referenced by:  disjeq1d  4628  volfiniun  23315  disjrnmpt  29398  iundisj2cnt  29558  unelldsys  30221  sigapildsys  30225  ldgenpisyslem1  30226  rossros  30243  measvun  30272  pmeasmono  30386  pmeasadd  30387  meadjuni  40674
  Copyright terms: Public domain W3C validator